Mots-clés : singular perturbation
@article{VTGU_2013_1_a4,
author = {D. A. Tursunov},
title = {Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {34--40},
year = {2013},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2013_1_a4/}
}
TY - JOUR AU - D. A. Tursunov TI - Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2013 SP - 34 EP - 40 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTGU_2013_1_a4/ LA - ru ID - VTGU_2013_1_a4 ER -
%0 Journal Article %A D. A. Tursunov %T Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2013 %P 34-40 %N 1 %U http://geodesic.mathdoc.fr/item/VTGU_2013_1_a4/ %G ru %F VTGU_2013_1_a4
D. A. Tursunov. Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 34-40. http://geodesic.mathdoc.fr/item/VTGU_2013_1_a4/
[1] Alymkulov K., “Analog metoda pogranfunktsii dlya resheniya modelnogo uravneniya Laitkhilla v sluchae, kogda nevozmuschennoe uravnenie imeet polyus tselogo poryadka v regulyarnoi osoboi tochke”, Differentsialnye uravneniya i optimalnoe upravlenie, Sb. tezisov konferentsii, posvyasch. 90-letiyu so dnya rozhdeniya akademika E. F. Mischenko, M., 2012, 12–14
[2] Alymkulov K., “Extension of boundary layer function method for singularly perturbed differential equation of Prandtle–Tichonov and Lighthill types”, Reports of the third congress of the world mathematical society of Turkic countries (Almaty, June July, 2009), 256–259
[3] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968
[4] Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.
[5] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 334 pp. | MR