Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 34-40
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the generalized method of boundary functions, a uniform asymptotic expansion of the solution of the boundary value problem for singularly perturbed ordinary second order differential equations with two turning points is constructed.
Keywords:
asymptotic expansion, turning point, second order differential equation, bisingular, Airy equation.
Mots-clés : singular perturbation
Mots-clés : singular perturbation
@article{VTGU_2013_1_a4,
author = {D. A. Tursunov},
title = {Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {34--40},
publisher = {mathdoc},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2013_1_a4/}
}
TY - JOUR AU - D. A. Tursunov TI - Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2013 SP - 34 EP - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2013_1_a4/ LA - ru ID - VTGU_2013_1_a4 ER -
%0 Journal Article %A D. A. Tursunov %T Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2013 %P 34-40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2013_1_a4/ %G ru %F VTGU_2013_1_a4
D. A. Tursunov. Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 34-40. http://geodesic.mathdoc.fr/item/VTGU_2013_1_a4/