Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 34-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the generalized method of boundary functions, a uniform asymptotic expansion of the solution of the boundary value problem for singularly perturbed ordinary second order differential equations with two turning points is constructed.
Keywords: asymptotic expansion, turning point, second order differential equation, bisingular, Airy equation.
Mots-clés : singular perturbation
@article{VTGU_2013_1_a4,
     author = {D. A. Tursunov},
     title = {Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {34--40},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_1_a4/}
}
TY  - JOUR
AU  - D. A. Tursunov
TI  - Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 34
EP  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_1_a4/
LA  - ru
ID  - VTGU_2013_1_a4
ER  - 
%0 Journal Article
%A D. A. Tursunov
%T Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 34-40
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2013_1_a4/
%G ru
%F VTGU_2013_1_a4
D. A. Tursunov. Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 34-40. http://geodesic.mathdoc.fr/item/VTGU_2013_1_a4/

[1] Alymkulov K., “Analog metoda pogranfunktsii dlya resheniya modelnogo uravneniya Laitkhilla v sluchae, kogda nevozmuschennoe uravnenie imeet polyus tselogo poryadka v regulyarnoi osoboi tochke”, Differentsialnye uravneniya i optimalnoe upravlenie, Sb. tezisov konferentsii, posvyasch. 90-letiyu so dnya rozhdeniya akademika E. F. Mischenko, M., 2012, 12–14

[2] Alymkulov K., “Extension of boundary layer function method for singularly perturbed differential equation of Prandtle–Tichonov and Lighthill types”, Reports of the third congress of the world mathematical society of Turkic countries (Almaty, June July, 2009), 256–259

[3] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[4] Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.

[5] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 334 pp. | MR