The problem of optimal control for moving sources for systems with distributed parameters
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 24-33

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem on optimal control of processes described by a set of equations of the parabolic type and an ordinary differential equation, with moving sources is investigated in the paper. For the considered problem of optimum control, the theorem of existence and uniqueness of the solution is proved, necessary conditions of optimality in the form of pointwise and integrated maximum principles are obtained, and sufficient conditions of Frechet differentiability of the criterion of quality are found and an expression for its gradient is obtained.
Keywords: moving sources, reduced problem, necessary conditions of optimality, maximum principle, integral identity.
@article{VTGU_2013_1_a3,
     author = {R. A. Teimurov},
     title = {The problem of optimal control for moving sources for systems with distributed parameters},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {24--33},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_1_a3/}
}
TY  - JOUR
AU  - R. A. Teimurov
TI  - The problem of optimal control for moving sources for systems with distributed parameters
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 24
EP  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_1_a3/
LA  - ru
ID  - VTGU_2013_1_a3
ER  - 
%0 Journal Article
%A R. A. Teimurov
%T The problem of optimal control for moving sources for systems with distributed parameters
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 24-33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2013_1_a3/
%G ru
%F VTGU_2013_1_a3
R. A. Teimurov. The problem of optimal control for moving sources for systems with distributed parameters. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 24-33. http://geodesic.mathdoc.fr/item/VTGU_2013_1_a3/