The problem of optimal control for moving sources for systems with distributed parameters
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 24-33
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A problem on optimal control of processes described by a set of equations of the parabolic type and an ordinary differential equation, with moving sources is investigated in the paper. For the considered problem of optimum control, the theorem of existence and uniqueness of the solution is proved, necessary conditions of optimality in the form of pointwise and integrated maximum principles are obtained, and sufficient conditions of Frechet differentiability of the criterion of quality are found and an expression for its gradient is obtained.
Keywords: moving sources, reduced problem, necessary conditions of optimality, maximum principle, integral identity.
@article{VTGU_2013_1_a3,
     author = {R. A. Teimurov},
     title = {The problem of optimal control for moving sources for systems with distributed parameters},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {24--33},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_1_a3/}
}
TY  - JOUR
AU  - R. A. Teimurov
TI  - The problem of optimal control for moving sources for systems with distributed parameters
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 24
EP  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_1_a3/
LA  - ru
ID  - VTGU_2013_1_a3
ER  - 
%0 Journal Article
%A R. A. Teimurov
%T The problem of optimal control for moving sources for systems with distributed parameters
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 24-33
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2013_1_a3/
%G ru
%F VTGU_2013_1_a3
R. A. Teimurov. The problem of optimal control for moving sources for systems with distributed parameters. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 24-33. http://geodesic.mathdoc.fr/item/VTGU_2013_1_a3/

[1] Butkovskii A. G., Pustylnikov L. M., Teoriya podvizhnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1980, 384 pp. | MR

[2] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp. | MR

[3] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1976, 736 pp. | MR

[4] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[5] Lions Zh. L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 416 pp. | MR

[6] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983, 392 pp. | MR | Zbl

[7] Iosida K., Funktsionalnyi analiz, Mir, M., 1967, 406 pp. | MR

[8] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974, 286 pp. | MR

[9] Goebel M., “On existence of optimal control”, Math. Nuchr., 93 (1979), 67–93 | DOI | MR | Zbl