Interface problems for linear pseudo-parabolic equations of the third order
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 16-23
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Existence of the unique solution of the interface problem for linear pseudo-parabolic equations of the third order with two lines of type change is proved.
Keywords: interface problems, linear pseudo-parabolic equations, boundary conditions, Riemann functions, integral equations.
@article{VTGU_2013_1_a2,
     author = {A. Sopuev and N. K. Arkabaev},
     title = {Interface problems for linear pseudo-parabolic equations of the third order},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {16--23},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_1_a2/}
}
TY  - JOUR
AU  - A. Sopuev
AU  - N. K. Arkabaev
TI  - Interface problems for linear pseudo-parabolic equations of the third order
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 16
EP  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_1_a2/
LA  - ru
ID  - VTGU_2013_1_a2
ER  - 
%0 Journal Article
%A A. Sopuev
%A N. K. Arkabaev
%T Interface problems for linear pseudo-parabolic equations of the third order
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 16-23
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2013_1_a2/
%G ru
%F VTGU_2013_1_a2
A. Sopuev; N. K. Arkabaev. Interface problems for linear pseudo-parabolic equations of the third order. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 16-23. http://geodesic.mathdoc.fr/item/VTGU_2013_1_a2/

[1] Dzhuraev T. D., Popelek Ya., “O klassifikatsii i privedenii k kanonicheskomu vidu uravnenii s chastnymi proizvodnymi tretego poryadka”, Differentsialnye uravneniya, 27:10 (1991), 1734–1745 | MR

[2] Colton D., “Pseudoparabolic equations in One Space variable”, J. Differential Equations, 1972, no. 12, 559–565 | DOI | MR | Zbl

[3] Rundell W., Stecher M., “Remarks concerning the supports of solutions of pseudoparabolic equation”, Proc. Amer. Math. Soc., 63:1 (1977), 77–81 | DOI | MR | Zbl

[4] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995, 301 pp. | Zbl

[5] Smirnov M. M., Uravneniya smeshannogo tipa, Nauka, M., 1970, 296 pp. | MR

[6] Salakhitdinov M. S., Urinov A. K., “Ob odnoi nelokalnoi kraevoi zadache dlya smeshannogo parabolo-giperbolicheskogo uravneniya”, Izv. AN UzSSR. Ser. fiz.-mat. nauk, 1984, no. 3, 29–34 | MR | Zbl

[7] Sopuev A., “Kraevye zadachi dlya parabolo-giperbolicheskogo uravnenii s dvumya liniyami izmeneniya tipa”, Izv. AN UzSSR. Ser. fiz.-mat. nauk, 1989, no. 4, 31–37 | MR | Zbl

[8] Islomov B., K teorii uravnenii smeshannogo tipa s dvumya liniyami i ploskostyami vyrozhdeniya, Avtoref. dis. ... dokt. fiz.-mat. nauk.: 01.01.02, Tashkent, 1995, 32 pp.

[9] Shkhanukov M. Kh., Lokalnye i nelokalnye kraevye zadachi dlya uravnenii tretego poryadka, Dis. ... dokt. fiz.-mat. nauk: 01.01.02, Nalchik, 1985, 225 pp. | Zbl

[10] Zhegalov V. I., Utkina E. A., “Ob odnom psevdoparabolicheskom uravnenii tretego poryadka”, Izv. vuzov. Matematika, 1999, no. 10, 73–76 | MR | Zbl

[11] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Kazansk. matem. o-vo, Kazan, 2001, 226 pp.

[12] Zhegalov V. I., “O sluchakh razreshimosti giperbolicheskikh uravnenii v kvaduraturakh”, Izv. vuzov. Matematika, 2004, no. 7, 47–52 | MR | Zbl

[13] Utkina E. A., “Ob odnom uravnenii v chastnykh proizvodnykh s singulyarnymi koeffitsientami”, Izv. vuzov. Matematika, 2006, no. 9, 70–76 | MR | Zbl

[14] Mironov A. N., “K metodu Rimana resheniya odnoi smeshannoi zadachi”, Vest. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2007, no. 2(15), 27–32 | DOI

[15] Tikhonova O. A., Ponizhenie poryadka i reshenie v kvadraturakh differentsialnykh uravnenii so starshimi chastnymi proizvodnymi, Avtoref. dis. ... kand. fiz.-mat. nauk: 01.01.02, Kazan, 2010, 17 pp.