Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 104-111
Voir la notice de l'article provenant de la source Math-Net.Ru
Brief history of the problem about conductors’ magnetic interaction is given in this work. Generally, the magnetic field is shown to have two component — swirling and potential ones. The problem of longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field is stated and solved.
Keywords:
electromagnetic interaction, swirling magnetic field, potential magnetic field, longitudinal magnetic force, resilient electroconductive core.
Mots-clés : longitudinal oscillations
Mots-clés : longitudinal oscillations
@article{VTGU_2013_1_a11,
author = {A. K. Tomilin and E. V. Prokopenko},
title = {Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {104--111},
publisher = {mathdoc},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2013_1_a11/}
}
TY - JOUR AU - A. K. Tomilin AU - E. V. Prokopenko TI - Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2013 SP - 104 EP - 111 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2013_1_a11/ LA - ru ID - VTGU_2013_1_a11 ER -
%0 Journal Article %A A. K. Tomilin %A E. V. Prokopenko %T Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2013 %P 104-111 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2013_1_a11/ %G ru %F VTGU_2013_1_a11
A. K. Tomilin; E. V. Prokopenko. Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 104-111. http://geodesic.mathdoc.fr/item/VTGU_2013_1_a11/