Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 104-111

Voir la notice de l'article provenant de la source Math-Net.Ru

Brief history of the problem about conductors’ magnetic interaction is given in this work. Generally, the magnetic field is shown to have two component — swirling and potential ones. The problem of longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field is stated and solved.
Keywords: electromagnetic interaction, swirling magnetic field, potential magnetic field, longitudinal magnetic force, resilient electroconductive core.
Mots-clés : longitudinal oscillations
@article{VTGU_2013_1_a11,
     author = {A. K. Tomilin and E. V. Prokopenko},
     title = {Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {104--111},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_1_a11/}
}
TY  - JOUR
AU  - A. K. Tomilin
AU  - E. V. Prokopenko
TI  - Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 104
EP  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_1_a11/
LA  - ru
ID  - VTGU_2013_1_a11
ER  - 
%0 Journal Article
%A A. K. Tomilin
%A E. V. Prokopenko
%T Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 104-111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2013_1_a11/
%G ru
%F VTGU_2013_1_a11
A. K. Tomilin; E. V. Prokopenko. Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 104-111. http://geodesic.mathdoc.fr/item/VTGU_2013_1_a11/