Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 104-111
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Brief history of the problem about conductors’ magnetic interaction is given in this work. Generally, the magnetic field is shown to have two component — swirling and potential ones. The problem of longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field is stated and solved.
Keywords: electromagnetic interaction, swirling magnetic field, potential magnetic field, longitudinal magnetic force, resilient electroconductive core.
Mots-clés : longitudinal oscillations
@article{VTGU_2013_1_a11,
     author = {A. K. Tomilin and E. V. Prokopenko},
     title = {Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {104--111},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_1_a11/}
}
TY  - JOUR
AU  - A. K. Tomilin
AU  - E. V. Prokopenko
TI  - Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 104
EP  - 111
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_1_a11/
LA  - ru
ID  - VTGU_2013_1_a11
ER  - 
%0 Journal Article
%A A. K. Tomilin
%A E. V. Prokopenko
%T Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 104-111
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2013_1_a11/
%G ru
%F VTGU_2013_1_a11
A. K. Tomilin; E. V. Prokopenko. Longitudinal oscillations of a resilient electroconductive core in an inhomogeneous magnetic field. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 104-111. http://geodesic.mathdoc.fr/item/VTGU_2013_1_a11/

[1] Amper A. M., Elektrodinamika, AN SSSR, M., 1954

[2] Tomilin A. K., Obobschennaya elektrodinamika, VKGTU, Ust-Kamenogorsk, 2009

[3] Tamm I. E., Osnovy teorii elektrichestva, Nauka, M., 1976

[4] Matveev A. N., Mekhanika i teoriya otnositelnosti, VSh, M., 1976

[5] Landau L. D., Livshits E. I., Kratkii kurs teoreticheskoi fiziki, v. 1, Mekhanika. Elektrodinamika, Nauka, M., 1969

[6] Maksvell Dzh., Izbrannye sochineniya po teorii elektromagnitnogo polya, GITTL, M., 1952

[7] Nikolaev G. V., Neprotivorechivaya elektrodinamika. Teoriya, eksperimenty, paradoksy, Tomsk, 1997

[8] Tomilin A. K., Eksperimentalnoe issledovanie prodolnogo elektromagnitnogo vzaimodeistviya, http://www.sciteclibrary.ru/rus/catalog/pages/9087.html

[9] Tomilin A. K., The Fundamentals of Generalized Electrodynamics, July 2008, arXiv: 0807.2172

[10] Tomilin A. K., The Potential-Vortex Theory of the Electromagnetic Field, Aug. 2010, arXiv: 1008.3994 | Zbl

[11] Koen J. van Vlaenderen, A generalisation of classical electrodynamics for the prediction of scalar field effects, arXiv: 0305098v1

[12] Khvorostenko N. P., “Prodolnye elektromagnitnye volny”, Izv. vuzov. Fizika, 1992, no. 3, 24–29

[13] Babakov I. M., Teoriya kolebanii, Nauka, M., 1968 | MR