Semi-stable second-order polynomials on the varifold of rays of the $A_3$ space
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 5-12
Minimal riggings making it possible to impose relatively semi-stable quadratic forms with constant coefficients on the varifold of trivariate affine ray space. It has been proved that there are two such riggings, and each of them generates its own structure in cotangent bundle of the specified varifold. It is proved that in any of these cases relative semi-stable quadratic differential form on the ruled space is proportional to the form that imposes a semi-Riemannian metric on the varifold of added vectors. Stationery state groups are identified for the discovered additional structures, and one-dimensional sub-groups are specified for these groups. This work is apparently related to the works [4, 5, 6] of the second author.
Keywords:
semi-stable quadratic form, moving frame, varifold of rays.
@article{VTGU_2013_1_a0,
author = {Z. P. Badyaeva and M. S. Bukhtyak},
title = {Semi-stable second-order polynomials on the varifold of rays of the $A_3$ space},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--12},
year = {2013},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2013_1_a0/}
}
TY - JOUR AU - Z. P. Badyaeva AU - M. S. Bukhtyak TI - Semi-stable second-order polynomials on the varifold of rays of the $A_3$ space JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2013 SP - 5 EP - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTGU_2013_1_a0/ LA - ru ID - VTGU_2013_1_a0 ER -
%0 Journal Article %A Z. P. Badyaeva %A M. S. Bukhtyak %T Semi-stable second-order polynomials on the varifold of rays of the $A_3$ space %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2013 %P 5-12 %N 1 %U http://geodesic.mathdoc.fr/item/VTGU_2013_1_a0/ %G ru %F VTGU_2013_1_a0
Z. P. Badyaeva; M. S. Bukhtyak. Semi-stable second-order polynomials on the varifold of rays of the $A_3$ space. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 5-12. http://geodesic.mathdoc.fr/item/VTGU_2013_1_a0/
[1] Finikov S. P., Metod vneshnikh form Kartana, GITTL, M.–L., 1948, 432 pp. | MR
[2] Akivis M. A., Mnogomernaya differentsialnaya geometriya, Izd-vo Kalininskogo un-ta, Kalinin, 1977, 83 pp. | MR
[3] Finikov S. P., Teoriya kongruentsii, GITTL, M., 1950, 528 pp. | MR
[4] Bukhtyak M. S., “Ob odnom shestimernom prostranstve”, Geom. sb., 22, Izd-vo TGU, Tomsk, 1982, 51–61
[5] Bukhtyak M. S., Svyaznost Veilya i svyaznost Levi–Chivita na chetyrekhparametricheskom vektornom pole, Dep. v VINITI. 29.09.1986 g. No 6857-V86, Tomsk, 1986, 34 pp.
[6] Bukhtyak M. S., “Zamechatelnye svyaznosti na chetyrekhparametricheskom vektornom pole”, Geom. sb., 29, Izd-vo TGU, Tomsk, 1988, 84–90