Specific character of disk motion on the rheological ground
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 68-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper proposes a new mathematical model of disk motion on the rheological ground on the basis of Kelvin's model. A system of differential equations of the disk motion is derived in the form of modified Chaplygin equations involving generalized rheological response force as well as nonholonomic constraints equations. The instability of undisturbed motion is studied by equations of the first approximation. It is shown that the rectilinear motion of the disk and spinning around a vertical diameter are unstable with respect to the nutation angle $\theta$.
Keywords: nonholonomic connections, rheological ground, relaxation curve
Mots-clés : Mikhailov hodograph.
@article{VTGU_2012_3_a8,
     author = {G. V. Pavlov and M. A. Kal'mova},
     title = {Specific character of disk motion on the rheological ground},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {68--77},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_3_a8/}
}
TY  - JOUR
AU  - G. V. Pavlov
AU  - M. A. Kal'mova
TI  - Specific character of disk motion on the rheological ground
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 68
EP  - 77
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_3_a8/
LA  - ru
ID  - VTGU_2012_3_a8
ER  - 
%0 Journal Article
%A G. V. Pavlov
%A M. A. Kal'mova
%T Specific character of disk motion on the rheological ground
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 68-77
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2012_3_a8/
%G ru
%F VTGU_2012_3_a8
G. V. Pavlov; M. A. Kal'mova. Specific character of disk motion on the rheological ground. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 68-77. http://geodesic.mathdoc.fr/item/VTGU_2012_3_a8/

[1] Vasilenko N. V., Teoriya kolebanii, Vysscha Shkola, Kiev, 1992, 430 pp.

[2] Pavlov G. V., Kalmova M. A., “Effekt vliyaniya polosy kontakta uprugo-vyazkogo osnovaniya na dinamiku diska”, Vestnik SamGTU. Ser. Fiz.-mat. nauki, 2009, no. 2(19), 186–192 | DOI

[3] Karapetyan A. V., Ustoichivost statsionarnykh dvizhenii, Editorial URSS, M., 1998, 166 pp.

[4] Merkin D. R., Vvedenie v teoriyu ustoichivosti dvizheniya, Nauka, M., 1971, 312 pp. | MR | Zbl