Specific character of disk motion on the rheological ground
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 68-77
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper proposes a new mathematical model of disk motion on the rheological ground on the basis of Kelvin's model. A system of differential equations of the disk motion is derived in the form of modified Chaplygin equations involving generalized rheological response force as well as nonholonomic constraints equations. The instability of undisturbed motion is studied by equations of the first approximation. It is shown that the rectilinear motion of the disk and spinning around a vertical diameter are unstable with respect to the nutation angle $\theta$.
Keywords:
nonholonomic connections, rheological ground, relaxation curve
Mots-clés : Mikhailov hodograph.
Mots-clés : Mikhailov hodograph.
@article{VTGU_2012_3_a8,
author = {G. V. Pavlov and M. A. Kal'mova},
title = {Specific character of disk motion on the rheological ground},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {68--77},
publisher = {mathdoc},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2012_3_a8/}
}
TY - JOUR AU - G. V. Pavlov AU - M. A. Kal'mova TI - Specific character of disk motion on the rheological ground JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2012 SP - 68 EP - 77 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2012_3_a8/ LA - ru ID - VTGU_2012_3_a8 ER -
G. V. Pavlov; M. A. Kal'mova. Specific character of disk motion on the rheological ground. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 68-77. http://geodesic.mathdoc.fr/item/VTGU_2012_3_a8/