Endoprimal Abelian groups and modules
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 31-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study homogeneous mappings of a direct sum of copies of a module to this module, the mapping are commuting with elements of the ring. The relation between the generalized endoprimality of the module and the property of unique addition on this ring is established.
Keywords: endoprimal (generalized endoprimal) module, ring with unique addition, $EE$-group.
@article{VTGU_2012_3_a3,
     author = {D. S. Chistyakov},
     title = {Endoprimal {Abelian} groups and modules},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {31--34},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_3_a3/}
}
TY  - JOUR
AU  - D. S. Chistyakov
TI  - Endoprimal Abelian groups and modules
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 31
EP  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_3_a3/
LA  - ru
ID  - VTGU_2012_3_a3
ER  - 
%0 Journal Article
%A D. S. Chistyakov
%T Endoprimal Abelian groups and modules
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 31-34
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2012_3_a3/
%G ru
%F VTGU_2012_3_a3
D. S. Chistyakov. Endoprimal Abelian groups and modules. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 31-34. http://geodesic.mathdoc.fr/item/VTGU_2012_3_a3/

[1] Albrecht U., Breaz S., Wickless W., “Generalized endoprimal abelian groups”, J. Alg. and Its Appl., 5:1 (2006), 1–17 | DOI | MR | Zbl

[2] Nelius Chr.-F., Ring emit eindentiger Addition, Padeborn, 1974

[3] Stephenson W., “Unique addition rings”, Can. J. Math., 21:6 (1969), 1455–1461 | DOI | MR | Zbl

[4] Mikhalev A. V., “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Mat. sb., 135(177):2 (1988), 210–224 | MR | Zbl

[5] Feigelstock S., Hausen J., Raphael R., “Groups which map onto their endomorphism rings”, Proc. Dublin Conference, Basel, 1999, 231–241 | MR

[6] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[7] Hausen J., Johnson J. A., “Centralizer near-rings that are rings”, J. Austr. Math. Soc., 59 (1995), 173–183 | DOI | MR | Zbl

[8] Lyubimtsev O. V., “Separabelnye abelevy gruppy bez krucheniya s UA-koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1419–1422 | MR | Zbl

[9] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial press, M., 2006