On an extremal problem
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 22-30
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper consider the problem about a range $\Delta$ of some functional on a class of pairs functions univalent and meromorphic in a “circle–exterior of the circle” system. By means of the Goluzin variation method, it is possible to obtain a system of differential equations for boundary functions, and to find the equation of the boundary of range $\Delta$.
Keywords: class $\mathfrak M'$, functional, method of internal variations, necessary condition, boundary functions, differential equations.
Mots-clés : variation formulas
@article{VTGU_2012_3_a2,
     author = {V. A. Pchelintsev},
     title = {On an extremal problem},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {22--30},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_3_a2/}
}
TY  - JOUR
AU  - V. A. Pchelintsev
TI  - On an extremal problem
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 22
EP  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_3_a2/
LA  - ru
ID  - VTGU_2012_3_a2
ER  - 
%0 Journal Article
%A V. A. Pchelintsev
%T On an extremal problem
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 22-30
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2012_3_a2/
%G ru
%F VTGU_2012_3_a2
V. A. Pchelintsev. On an extremal problem. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 22-30. http://geodesic.mathdoc.fr/item/VTGU_2012_3_a2/

[1] Aleksandrov I. A., Metody geometricheskoi teorii analiticheskikh funktsii, Tom. gos. un-t, Tomsk, 2001

[2] Goluzin G. M., “Metod variatsii v konformnom otobrazhenii”, Matem. sb., 19(61):2 (1946), 203–236 | MR | Zbl

[3] Lebedev N. A., “Mazhorantnaya oblast dlya vyrazheniya $I=\ln\{z^\lambda[f'(z)]^{1-\lambda}/[f(z)]^\lambda\}$ v klasse $S$”, Vestnik Leningr. un-ta, 1955, no. 8(3), 29–41 | MR | Zbl

[4] Lebedev N. A., Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975 | MR | Zbl

[5] Matveev P. N., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Lan, SPb., 2008