On an extremal problem
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 22-30
The paper consider the problem about a range $\Delta$ of some functional on a class of pairs functions univalent and meromorphic in a “circle–exterior of the circle” system. By means of the Goluzin variation method, it is possible to obtain a system of differential equations for boundary functions, and to find the equation of the boundary of range $\Delta$.
Keywords:
class $\mathfrak M'$, functional, method of internal variations, necessary condition, boundary functions, differential equations.
Mots-clés : variation formulas
Mots-clés : variation formulas
@article{VTGU_2012_3_a2,
author = {V. A. Pchelintsev},
title = {On an extremal problem},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {22--30},
year = {2012},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2012_3_a2/}
}
V. A. Pchelintsev. On an extremal problem. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 22-30. http://geodesic.mathdoc.fr/item/VTGU_2012_3_a2/
[1] Aleksandrov I. A., Metody geometricheskoi teorii analiticheskikh funktsii, Tom. gos. un-t, Tomsk, 2001
[2] Goluzin G. M., “Metod variatsii v konformnom otobrazhenii”, Matem. sb., 19(61):2 (1946), 203–236 | MR | Zbl
[3] Lebedev N. A., “Mazhorantnaya oblast dlya vyrazheniya $I=\ln\{z^\lambda[f'(z)]^{1-\lambda}/[f(z)]^\lambda\}$ v klasse $S$”, Vestnik Leningr. un-ta, 1955, no. 8(3), 29–41 | MR | Zbl
[4] Lebedev N. A., Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975 | MR | Zbl
[5] Matveev P. N., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Lan, SPb., 2008