Mathematical modeling of low-temperature drying of a peat layer
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 93-106
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A one-temperature mathematical model for drying of a peat layer is proposed. Peat is considered to be a multiphase media consisting of a dry organic substance, free and bound water, and gas phase. The iterated-interpolation method is used to solve numerically the mathematical model.
Keywords: low-temperature drying, peat, multiphase medium, peat fires, forecast.
@article{VTGU_2012_3_a11,
     author = {A. I. Fil'kov and D. A. Gladkii},
     title = {Mathematical modeling of low-temperature drying of a~peat layer},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {93--106},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_3_a11/}
}
TY  - JOUR
AU  - A. I. Fil'kov
AU  - D. A. Gladkii
TI  - Mathematical modeling of low-temperature drying of a peat layer
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 93
EP  - 106
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_3_a11/
LA  - ru
ID  - VTGU_2012_3_a11
ER  - 
%0 Journal Article
%A A. I. Fil'kov
%A D. A. Gladkii
%T Mathematical modeling of low-temperature drying of a peat layer
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 93-106
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2012_3_a11/
%G ru
%F VTGU_2012_3_a11
A. I. Fil'kov; D. A. Gladkii. Mathematical modeling of low-temperature drying of a peat layer. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 93-106. http://geodesic.mathdoc.fr/item/VTGU_2012_3_a11/

[1] Page S. E., Siegert F., Rieley J. O., et al., “The amount of carbon released from peat and forest fires in Indonesia during 1997”, Nature, 420:6911 (2002), 61–65 | DOI

[2] Svensen H., Dysthe D. K., Bandlien E. H., et al., “Subsurface combustion in Mali: Refutation of the active volcanism hypothesis in West Africa”, Geology, 31:7 (2003), 581–584 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[3] Bertschi A. A., Yokelson R. J., Ward D. E., et al., “Trace gas and particle emissions from fires in large diameter and belowground biomass fuels”, J. Geophysical Research, 108:D13 (2003), 8472, 12 pp. | DOI

[4] Grishin A. M., Modelirovanie i prognoz katastrof, Ch. 1, Izd-vo Tom. un-ta, Tomsk, 2003, 524 pp.

[5] Kellner E., Halldin S., “Water budget and surface-layer water storage in a Sphagnum bog in central Sweden”, Hydrol. Processes, 16:1 (2002), 87–103 | DOI

[6] Kennedy G. W., Price J. S., “A conceptual model of volume-change controls on the hydrology of cutover peats”, J. Hydrology, 302:1–4 (2005), 13–27 | DOI

[7] Garnier P., Perrier E., Angulo A. J., Baveye P., “Numerical model of 3-dimensional anisotropic deformation and water flow in welling soil”, Soil Sci., 162:6 (1997), 410–420 | DOI

[8] Oostindie K., Bronswijk J. J. B., FLOCR – A simulation model for the calculation of water balance, cracking and surface subsidence of clay soils, Rep. 47, Winand Staring Cent., Agric. Res. Dep., Wageningen, Netherlands, 1992

[9] Kennedy G. W., Price J. S., “Simulating soil water dynamics in a cutover bog”, Water resources research, 40 (2004), W12410 | DOI

[10] Harbaugh A. W., Banta E. R., Hill M. C., McDonald M. G., Modflow-2000, The U.S. Geological Survey Modular Ground-Water Model – User Guide to Modularization Concepts and the Ground-Water Flow Process, U.S. Geological Survey Open-File Report 00-92, 2000, 121

[11] Restrepo J. I., Montoya A. M., Obeysekera J., “A wetland simulation module for the Modflow ground water model”, Ground Water, 36:5 (1998), 764–770 | DOI

[12] Running S. W., Coughlan J. C., “A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes”, Ecol. Model., 42:2 (1988), 125–154 | DOI

[13] Jansson P. E., Karlberg L., Coupled heat and mass transfer model for soil-plant-atmosphere systems, Royal Institute of Technology, Department of Civil and Environmental Engineering, Stockholm, 2001, 321

[14] Zhang Y. Li., Trettin C., et al., “An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems”, Global Biogeochem. Cycles, 16:4 (2002), 1–17 | DOI

[15] Engel T., Priesack E., “Expert-N, a building-block system of nitrogen models as resource for advice, research, water management and policy”, Integrated Soil and Sediment Research: A Basis for Proper Protection, eds. Eijsackers H. J. P., Hamers T., Kluwer Academic Publishers, Dodrecht, The Netherlands, 1993, 503–507

[16] Flerchinger G. N., Saxton K. E., “Simultaneous heat and water model of a freezing snowresiduesoil system. I. Theory and development”, Trans. Am. Soc. Agric. Eng., 32:2 (1989), 565–571 | DOI

[17] Hillel D., Fundamentals of Soil Physics, Academic Press, N.Y., 1980, 413 pp.

[18] Frolking S., Crill P., “Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: measurement and modeling”, Global Biogeochem. Cycles, 8:4 (1994), 385–397 | DOI

[19] Granberg G., Grip H., Ottoson Lofvenus M., et al., “A simple model for simulation of water content, soil frost, and soil temperatures in boreal mixed mires”, Water Resour. Res., 35:12 (1999), 3771–3782 | DOI

[20] Guertin D. P., Barten P. K., Brooks K. N., “The peatland hydrologic impact model: development and testing”, Nord. Hydrol., 18:2 (1987), 79–100

[21] Isakov G. N., Kuzin A. Ya., Kulizhskii S. P., Subbotin A. N., “Prognozirovanie strukturnogo sostoyaniya i temperaturno-vlazhnostnykh rezhimov perenosa v verkhnikh gorizontakh pochvogruntov”, Trudy 4 Minskogo Mezhdunarodnogo foruma po teplomassoobmenu, Minsk, 2000, 160–169

[22] Grishin A. M., Modelirovanie i prognoz katastrof, Ch. 2, Praktika, Kemerovo, 2005, 562 pp.

[23] Grishin A. M., Zinchenko V. I., Efimov K. N. i dr., Iteratsionno-interpolyatsionnyi metod i ego prilozheniya, Ucheb. posobie, Tomsk, 2004, 320 pp.

[24] Grishin A. M., Fizika lesnykh pozharov, Izd-vo Tom. un-ta, Tomsk, 1994, 218 pp. | MR

[25] Cancellieri D., Leroy-Cancellieri V., Leoni E., et al., “Kinetic investigation on the smouldering combustion of boreal peat”, Fuel, 93 (2012), 479–485 | DOI

[26] Kuzin A. Ya., Filkov A. I., Sharypov O. V., et al., “A comparative study to evaluate the drying kinetics of Boreal peats from micro to macro scales”, Energy Fuels, 26:1 (2012), 349–356 | DOI

[27] Kovrigo V. P., Kaurichev I. S., Burlakova L. M., Pochvovedenie s osnovami geologii, Kolos, M., 2000, 416 pp.

[28] Mironov V. A., Palyukh B. V., Vetrov A. N., Osnovy postroeniya intellektualnykh informatsionnykh sistem dlya prognozirovaniya, preduprezhdeniya i likvidatsii torfyanykh pozharov, Monografiya, TGTU, Tver, 2004, 104 pp.

[29] Solovev S. V., Ekologicheskie posledstviya lesnykh i torfyanykh pozharov, Dis. $\dots$ kand. tekhn. nauk: 05.26.03, 03.00.16, M., 2006, 222 pp.