The research of stationary solutions and the optimization of parameters of the mathematical model of methanogenesis
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 15-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Stationary solutions of systems of differential equations describing the process of biogas production (methanogenesis) are found. The conditions of asymptotic stability for these solutions are presented. The optimum flow rate of the substrate for the continuous regime of the methanogenesis is found.
Keywords: methanogenesis, biogas, mathematical model, system of ordinary differential equations, stationary points, stability.
@article{VTGU_2012_3_a1,
     author = {S. A. Korolev and D. V. Maikov and I. G. Rusyak},
     title = {The research of stationary solutions and the optimization of parameters of the mathematical model of methanogenesis},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {15--21},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_3_a1/}
}
TY  - JOUR
AU  - S. A. Korolev
AU  - D. V. Maikov
AU  - I. G. Rusyak
TI  - The research of stationary solutions and the optimization of parameters of the mathematical model of methanogenesis
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 15
EP  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_3_a1/
LA  - ru
ID  - VTGU_2012_3_a1
ER  - 
%0 Journal Article
%A S. A. Korolev
%A D. V. Maikov
%A I. G. Rusyak
%T The research of stationary solutions and the optimization of parameters of the mathematical model of methanogenesis
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 15-21
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2012_3_a1/
%G ru
%F VTGU_2012_3_a1
S. A. Korolev; D. V. Maikov; I. G. Rusyak. The research of stationary solutions and the optimization of parameters of the mathematical model of methanogenesis. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 15-21. http://geodesic.mathdoc.fr/item/VTGU_2012_3_a1/

[1] Eder B., Shults Kh., Biogazovye ustanovki, Prakticheskoe posobie [Elektronnyi resurs], Sait kompanii “Zorg” (Ukraina), 2006, (data obrascheniya: 11.03.2012) URL: http://zorgbiogas.ru/biblioteka/biogas_book/chapter_2

[2] Dvoretskii D. S. i dr., Kompyuternoe modelirovanie biotekhnologicheskikh protsessov i sistem, Izd-vo TGTU, Tambov, 2005, 80 pp.

[3] Gerber M., An analysis of available mathematical models for anaerobic digestion of organic substances for production of biogas, [Elektronnyi resurs], Ruhr-Universitat Bochum, 2008, (data obrascheniya: 11.03.2012) URL: http://www.ruhr-uni-bochum.de/thermo/Forschung/pdf/IGRC_Full_Paper_Paris.pdf

[4] Korolev S. A., Maikov D. V., “Razrabotka matematicheskoi modeli anaerobnogo metanovogo brozheniya na osnove modeli rosta populyatsii”, Matematicheskoe i kompyuternoe modelirovanie tekhnicheskikh i sotsialno-ekonomicheskikh sistem, tez. dokl. region. konf. (Izhevsk, 14 maya 2010 g.), Izhevsk, 2010, 27–30

[5] Egorov A. I., Obyknovennye differentsialnye uravneniya s prilozheniyami, Ucheb. dlya vuzov, Fizmatlit, M., 2005, 384 pp. | MR

[6] Verzhbitskii V. M., Chislennye metody (matematicheskii analiz i obyknovennye differentsialnye uravneniya), Uchebnik dlya vuzov, Vysshaya shkola, M., 2001, 382 pp.