On the general form of a uniformly continuous functional defined on the $C_p$-space
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 5-14
Cet article a éte moissonné depuis la source Math-Net.Ru
The general form of a uniformly continuous functional defined on the space of continuous real-valued functions with the topology of pointwise convergence is described.
Keywords:
uniformly continuous functions, function spaces, topology of pointwise convergence.
@article{VTGU_2012_3_a0,
author = {A. V. Arbit},
title = {On the general form of a~uniformly continuous functional defined on the $C_p$-space},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--14},
year = {2012},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2012_3_a0/}
}
TY - JOUR AU - A. V. Arbit TI - On the general form of a uniformly continuous functional defined on the $C_p$-space JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2012 SP - 5 EP - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTGU_2012_3_a0/ LA - ru ID - VTGU_2012_3_a0 ER -
A. V. Arbit. On the general form of a uniformly continuous functional defined on the $C_p$-space. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 5-14. http://geodesic.mathdoc.fr/item/VTGU_2012_3_a0/
[1] Arkhangelskii A. V., Topologicheskie prostranstva funktsii, Izd-vo MGU, M., 1989 | MR
[2] Okunev O., “Homeomorphisms of function spaces and hereditary cardinal invariants”, Topol. and its Appl., 80 (1997), 177–188 | DOI | MR | Zbl
[3] Gulko S. P., “O ravnomernykh gomeomorfizmakh prostranstv nepreryvnykh funktsii”, Trudy matem. in-ta im. V. A. Steklova AN SSSR, 193, 1992, 82–88 | MR | Zbl
[4] Engelking R., Obschaya topologiya, per. s angl., Mir, M., 1986 | MR