On the general form of a uniformly continuous functional defined on the $C_p$-space
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 5-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The general form of a uniformly continuous functional defined on the space of continuous real-valued functions with the topology of pointwise convergence is described.
Keywords: uniformly continuous functions, function spaces, topology of pointwise convergence.
@article{VTGU_2012_3_a0,
     author = {A. V. Arbit},
     title = {On the general form of a~uniformly continuous functional defined on the $C_p$-space},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--14},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_3_a0/}
}
TY  - JOUR
AU  - A. V. Arbit
TI  - On the general form of a uniformly continuous functional defined on the $C_p$-space
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 5
EP  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_3_a0/
LA  - ru
ID  - VTGU_2012_3_a0
ER  - 
%0 Journal Article
%A A. V. Arbit
%T On the general form of a uniformly continuous functional defined on the $C_p$-space
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 5-14
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2012_3_a0/
%G ru
%F VTGU_2012_3_a0
A. V. Arbit. On the general form of a uniformly continuous functional defined on the $C_p$-space. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2012), pp. 5-14. http://geodesic.mathdoc.fr/item/VTGU_2012_3_a0/

[1] Arkhangelskii A. V., Topologicheskie prostranstva funktsii, Izd-vo MGU, M., 1989 | MR

[2] Okunev O., “Homeomorphisms of function spaces and hereditary cardinal invariants”, Topol. and its Appl., 80 (1997), 177–188 | DOI | MR | Zbl

[3] Gulko S. P., “O ravnomernykh gomeomorfizmakh prostranstv nepreryvnykh funktsii”, Trudy matem. in-ta im. V. A. Steklova AN SSSR, 193, 1992, 82–88 | MR | Zbl

[4] Engelking R., Obschaya topologiya, per. s angl., Mir, M., 1986 | MR