On the inverse problem for the quasilinear partial differential equation of the first order
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 56-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method of studying the solvability of the inverse problem for a quasilinear partial differential equation of first order is proposed. Using the nonlinear method of characteristics based on the introduction of an additional argument, the problem is reduced to the study of a nonlinear integral equation. The restored function is found from a nonlinear Volterra integral equation of the first kind by use of a nonlinear integral transformation.
Keywords: inverse problem, quasilinear equation, additional parameter, nonlinear integral transform, method of compression mappings.
@article{VTGU_2012_2_a6,
     author = {T. K. Yuldashev},
     title = {On the inverse problem for the quasilinear partial differential equation of the first order},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {56--62},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_2_a6/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - On the inverse problem for the quasilinear partial differential equation of the first order
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 56
EP  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_2_a6/
LA  - ru
ID  - VTGU_2012_2_a6
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T On the inverse problem for the quasilinear partial differential equation of the first order
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 56-62
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2012_2_a6/
%G ru
%F VTGU_2012_2_a6
T. K. Yuldashev. On the inverse problem for the quasilinear partial differential equation of the first order. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 56-62. http://geodesic.mathdoc.fr/item/VTGU_2012_2_a6/

[1] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi pervogo poryadka, Fizmatlit, M., 2003, 416 pp. | Zbl

[2] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, MGU, M., 1994, 285 pp.

[3] Romanov V. G., Obratnye zadachi dlya matematicheskoi fiziki, Nauka, M., 1984, 264 pp. | MR

[4] Yuldashev T. K., Nelineinye integralnye i integro-differentsialnye uravneniya, OshGYuI, Osh, 2010, 107 pp.