Nonholonomic torses of the second kind in the four-dimensional Euclidean space
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 33-51
Cet article a éte moissonné depuis la source Math-Net.Ru
Geometry of a smooth three-dimensional distribution $\Delta_3$ with zero total curvature of the second kind is studied in a domain $G$ in the four-dimensional space $E_4$.
Keywords:
nonholonomic geometry, Cartan's method.
Mots-clés : distribution, Pfaffian equation
Mots-clés : distribution, Pfaffian equation
@article{VTGU_2012_2_a4,
author = {O. V. Tsokolova},
title = {Nonholonomic torses of the second kind in the four-dimensional {Euclidean} space},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {33--51},
year = {2012},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2012_2_a4/}
}
TY - JOUR AU - O. V. Tsokolova TI - Nonholonomic torses of the second kind in the four-dimensional Euclidean space JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2012 SP - 33 EP - 51 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTGU_2012_2_a4/ LA - ru ID - VTGU_2012_2_a4 ER -
O. V. Tsokolova. Nonholonomic torses of the second kind in the four-dimensional Euclidean space. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 33-51. http://geodesic.mathdoc.fr/item/VTGU_2012_2_a4/
[1] Dubrovin B. A., Novikov C. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR
[2] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1, Nauka, M., 1981
[3] Finikov S. P., Metod vneshnikh form Kartana, GITTL, M.–L., 1948
[4] Onischuk N. M., “Geometriya vektornogo polya v chetyrekhmernom evklidovom prostranstve”, Mezhdunarodnaya konferentsiya po matematike i mekhanike, Tomsk, 2003, 60–68
[5] Slukhaev V. V., Geometriya vektornykh polei, Izd-vo Tom. un-ta, Tomsk, 1982
[6] Aminov Yu. A., Geometriya vektornogo polya, Nauka, M., 1990 | MR | Zbl