Nonholonomic torses of the second kind in the four-dimensional Euclidean space
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 33-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Geometry of a smooth three-dimensional distribution $\Delta_3$ with zero total curvature of the second kind is studied in a domain $G$ in the four-dimensional space $E_4$.
Keywords: nonholonomic geometry, Cartan's method.
Mots-clés : distribution, Pfaffian equation
@article{VTGU_2012_2_a4,
     author = {O. V. Tsokolova},
     title = {Nonholonomic torses of the second kind in the four-dimensional {Euclidean} space},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {33--51},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_2_a4/}
}
TY  - JOUR
AU  - O. V. Tsokolova
TI  - Nonholonomic torses of the second kind in the four-dimensional Euclidean space
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 33
EP  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_2_a4/
LA  - ru
ID  - VTGU_2012_2_a4
ER  - 
%0 Journal Article
%A O. V. Tsokolova
%T Nonholonomic torses of the second kind in the four-dimensional Euclidean space
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 33-51
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2012_2_a4/
%G ru
%F VTGU_2012_2_a4
O. V. Tsokolova. Nonholonomic torses of the second kind in the four-dimensional Euclidean space. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 33-51. http://geodesic.mathdoc.fr/item/VTGU_2012_2_a4/

[1] Dubrovin B. A., Novikov C. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[2] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1, Nauka, M., 1981

[3] Finikov S. P., Metod vneshnikh form Kartana, GITTL, M.–L., 1948

[4] Onischuk N. M., “Geometriya vektornogo polya v chetyrekhmernom evklidovom prostranstve”, Mezhdunarodnaya konferentsiya po matematike i mekhanike, Tomsk, 2003, 60–68

[5] Slukhaev V. V., Geometriya vektornykh polei, Izd-vo Tom. un-ta, Tomsk, 1982

[6] Aminov Yu. A., Geometriya vektornogo polya, Nauka, M., 1990 | MR | Zbl