On a~linear homeomorphism of spaces of continuous functions on subsets of the Sorgenfrey line
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 29-32
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, it is proved that the spaces $C_p(I)$ and $C_p(\mathcal E)$ are linearly homeomorphic. Here, the interval $I=[0,1]$ and a Cantor set $\mathcal E$ are equipped with the Sorgenfrey topology.
Keywords:
Sorgenfrey topology, spaces of continuous functions, linear homeomorphism, complemented subspace.
@article{VTGU_2012_2_a3,
author = {N. N. Trofimenko and T. E. Khmyleva},
title = {On a~linear homeomorphism of spaces of continuous functions on subsets of the {Sorgenfrey} line},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {29--32},
publisher = {mathdoc},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2012_2_a3/}
}
TY - JOUR AU - N. N. Trofimenko AU - T. E. Khmyleva TI - On a~linear homeomorphism of spaces of continuous functions on subsets of the Sorgenfrey line JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2012 SP - 29 EP - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2012_2_a3/ LA - ru ID - VTGU_2012_2_a3 ER -
%0 Journal Article %A N. N. Trofimenko %A T. E. Khmyleva %T On a~linear homeomorphism of spaces of continuous functions on subsets of the Sorgenfrey line %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2012 %P 29-32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2012_2_a3/ %G ru %F VTGU_2012_2_a3
N. N. Trofimenko; T. E. Khmyleva. On a~linear homeomorphism of spaces of continuous functions on subsets of the Sorgenfrey line. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 29-32. http://geodesic.mathdoc.fr/item/VTGU_2012_2_a3/