On a linear homeomorphism of spaces of continuous functions on subsets of the Sorgenfrey line
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 29-32
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, it is proved that the spaces $C_p(I)$ and $C_p(\mathcal E)$ are linearly homeomorphic. Here, the interval $I=[0,1]$ and a Cantor set $\mathcal E$ are equipped with the Sorgenfrey topology.
Keywords:
Sorgenfrey topology, spaces of continuous functions, linear homeomorphism, complemented subspace.
@article{VTGU_2012_2_a3,
author = {N. N. Trofimenko and T. E. Khmyleva},
title = {On a~linear homeomorphism of spaces of continuous functions on subsets of the {Sorgenfrey} line},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {29--32},
year = {2012},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2012_2_a3/}
}
TY - JOUR AU - N. N. Trofimenko AU - T. E. Khmyleva TI - On a linear homeomorphism of spaces of continuous functions on subsets of the Sorgenfrey line JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2012 SP - 29 EP - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTGU_2012_2_a3/ LA - ru ID - VTGU_2012_2_a3 ER -
%0 Journal Article %A N. N. Trofimenko %A T. E. Khmyleva %T On a linear homeomorphism of spaces of continuous functions on subsets of the Sorgenfrey line %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2012 %P 29-32 %N 2 %U http://geodesic.mathdoc.fr/item/VTGU_2012_2_a3/ %G ru %F VTGU_2012_2_a3
N. N. Trofimenko; T. E. Khmyleva. On a linear homeomorphism of spaces of continuous functions on subsets of the Sorgenfrey line. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 29-32. http://geodesic.mathdoc.fr/item/VTGU_2012_2_a3/
[1] Pestov V. G., “The coincidence of the dimensions dim of $l$-equivalent topological spaces”, Dokl. Akad. Nauk SSSR, 266:3 (1982), 553–556 | MR | Zbl
[2] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp. | MR
[3] Kalton N. J., Albiac F., Topics in Banach Space Theory, Springer, 2006, 373 pp. | MR | Zbl
[4] Arkhangelskii A. V., “O lineinykh gomeomorfizmakh prostranstv funktsii”, DAN SSSR, 264:6 (1982), 1289–1292 | MR