On a linear homeomorphism of spaces of continuous functions on subsets of the Sorgenfrey line
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 29-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, it is proved that the spaces $C_p(I)$ and $C_p(\mathcal E)$ are linearly homeomorphic. Here, the interval $I=[0,1]$ and a Cantor set $\mathcal E$ are equipped with the Sorgenfrey topology.
Keywords: Sorgenfrey topology, spaces of continuous functions, linear homeomorphism, complemented subspace.
@article{VTGU_2012_2_a3,
     author = {N. N. Trofimenko and T. E. Khmyleva},
     title = {On a~linear homeomorphism of spaces of continuous functions on subsets of the {Sorgenfrey} line},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {29--32},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_2_a3/}
}
TY  - JOUR
AU  - N. N. Trofimenko
AU  - T. E. Khmyleva
TI  - On a linear homeomorphism of spaces of continuous functions on subsets of the Sorgenfrey line
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 29
EP  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_2_a3/
LA  - ru
ID  - VTGU_2012_2_a3
ER  - 
%0 Journal Article
%A N. N. Trofimenko
%A T. E. Khmyleva
%T On a linear homeomorphism of spaces of continuous functions on subsets of the Sorgenfrey line
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 29-32
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2012_2_a3/
%G ru
%F VTGU_2012_2_a3
N. N. Trofimenko; T. E. Khmyleva. On a linear homeomorphism of spaces of continuous functions on subsets of the Sorgenfrey line. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 29-32. http://geodesic.mathdoc.fr/item/VTGU_2012_2_a3/

[1] Pestov V. G., “The coincidence of the dimensions dim of $l$-equivalent topological spaces”, Dokl. Akad. Nauk SSSR, 266:3 (1982), 553–556 | MR | Zbl

[2] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp. | MR

[3] Kalton N. J., Albiac F., Topics in Banach Space Theory, Springer, 2006, 373 pp. | MR | Zbl

[4] Arkhangelskii A. V., “O lineinykh gomeomorfizmakh prostranstv funktsii”, DAN SSSR, 264:6 (1982), 1289–1292 | MR