Numerical solution of Navier–Stokes equations on computers with parallel architecture
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 88-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we numerically solve the Navier–Stokes equations using high-performance computing technology, such as systems with distributed memory and graphic accelerators. As a test problem, we consider the classical problem of computational fluid dynamics, namely, the motion of a fluid in a rectangular cavity.
Keywords: Navier–Stokes equations, OpenMP system, MPI library, CUDA technology.
@article{VTGU_2012_2_a10,
     author = {D. V. Degi and A. V. Starchenko},
     title = {Numerical solution of {Navier{\textendash}Stokes} equations on computers with parallel architecture},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {88--98},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_2_a10/}
}
TY  - JOUR
AU  - D. V. Degi
AU  - A. V. Starchenko
TI  - Numerical solution of Navier–Stokes equations on computers with parallel architecture
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 88
EP  - 98
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_2_a10/
LA  - ru
ID  - VTGU_2012_2_a10
ER  - 
%0 Journal Article
%A D. V. Degi
%A A. V. Starchenko
%T Numerical solution of Navier–Stokes equations on computers with parallel architecture
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 88-98
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2012_2_a10/
%G ru
%F VTGU_2012_2_a10
D. V. Degi; A. V. Starchenko. Numerical solution of Navier–Stokes equations on computers with parallel architecture. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 88-98. http://geodesic.mathdoc.fr/item/VTGU_2012_2_a10/

[1] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, uchebnik dlya vuzov, 6-e izd., pererab. i dop., Nauka, M., 1987, 840 pp. | MR

[2] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984, 124 pp.

[3] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, ed. Kh. D. Ikramov, Mir, M., 1991, 367 pp. | MR

[4] http://skif.tsu.ru

[5] U. Ghia, K. N. Ghia, C. T. Shin, “High-Resolutions for incompressible flow using the Navier–Stokes equations and a multigrid method”, J. Comp. Phys., 48 (1982), 387–411 | DOI | Zbl

[6] Bogoslovskii N. N., Esaulov A. O., Starchenko A. V., “Parallelnaya realizatsiya algoritma vychislitelnoi gidrodinamiki SIMPLE”, Sibirskaya shkola seminar po parallelnym vychisleniyam, Izd-vo Tom. un-ta, Tomsk, 2002, 118–124

[7] Starchenko A. V., Danilkin E. A., “Parallelnaya realizatsiya chislennogo metoda resheniya sistemy uravnenii Nave–Stoksa pri modelirovanii krupnykh vikhrei turbulentnykh techenii”, Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya Informatsionnye tekhnologii, 7:2 (2009), 49–61

[8] Belikov D. A. Govyazov I. V. i dr., Vysokoproizvoditelnye vychisleniya na klasterakh, ucheb. posobie, ed. A. V. Starchenko, Izd-vo Tom. un-ta, Tomsk, 2008, 198 pp.

[9] Boreskov A. V., Kharlamov A. A., Osnovy raboty s tekhnologiei CUDA, DMK Press, M., 2010, 232 pp.