Hopfian Abelian groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents the general properties of Hopfian Abelian groups, in particular, those related to direct decompositions. The complete description of Hopfian divisible groups is presented; on the basis of this description, the study of hopficity of arbitrary Abelian groups is reduced to the study of hopficity of reduced groups. Direct sums of cyclic groups that are Hopfian groups are characterized.
Keywords: Abelian group, Hopfian group, reduced group, cyclic group.
Mots-clés : divisible group
@article{VTGU_2012_2_a0,
     author = {E. V. Kaigorodov},
     title = {Hopfian {Abelian} groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--12},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_2_a0/}
}
TY  - JOUR
AU  - E. V. Kaigorodov
TI  - Hopfian Abelian groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 5
EP  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_2_a0/
LA  - ru
ID  - VTGU_2012_2_a0
ER  - 
%0 Journal Article
%A E. V. Kaigorodov
%T Hopfian Abelian groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 5-12
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2012_2_a0/
%G ru
%F VTGU_2012_2_a0
E. V. Kaigorodov. Hopfian Abelian groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2012), pp. 5-12. http://geodesic.mathdoc.fr/item/VTGU_2012_2_a0/

[1] Baumslag G., “Hopficity and Abelian groups”, Topics in Abelian Groups, Proc. New Mexico Symposium on Abelian Groups, 1962, 331–335 | MR

[2] Baumslag G., “On Abelian Hopfian groups. I”, Math. Zeitschr., 78:1 (1962), 53–54 | DOI | MR | Zbl

[3] Baumslag G., Solitar D., “Some two-generator one-relator non-Hopfian groups”, Bull. Amer. Math. Soc., 68 (1962), 199–201 | DOI | MR | Zbl

[4] Corner L. S., “Three examples on Hopficity in torsion-free Abelian groups”, Acta Math. Acad. Sci. Hung., 16:3–4 (1965), 303–310 | DOI | MR | Zbl

[5] Yves De Cornulier, “Finitely presentable, non-Hopfian groups with Kazhdan's Property (T) and infinite outer automorphism group”, Proc. Amer. Math. Soc., 135 (2005), 1–8 | MR

[6] Higman G., “A finitely generated group with an isomorphic proper factor group”, J. London Math. Soc., 26 (1951), 59–61 | DOI | MR | Zbl

[7] Irwin J. M., Takashi J., “A quasi-decomposable Abelian group without proper isomorphic quotient groups and proper isomorphic subgroups”, Pacif. J. Math., 29:1 (1969), 151–160 | DOI | MR | Zbl

[8] David Meier, “Non-Hopfian groups”, J. London Math. Soc., 26 (1982), 265–270 | DOI | MR | Zbl

[9] Neumann B. H., “A two-generator group isomorphic to a proper factor group”, J. London Math. Soc., 25 (1950), 247–248 | DOI | MR | Zbl

[10] Takashi J., Irwin J. M., “A quasi-decomposable Abelian group without proper isomorphic quotient groups and proper isomorphic subgroups, 2”, J. Fac. Sci. Hokkaido Univ. Ser. 1, 20:4 (1969), 194–203 | MR

[11] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial Press, M., 2006, 512 pp.

[12] Maltsev A. I., “Obobschenno nilpotentnye algebry i ikh prisoedinennye gruppy”, Matem. sb., 25(67):3 (1949), 347–366 | MR | Zbl

[13] Mikaelyan V. G., “O konechno porozhdënnykh razreshimykh nekhopfovykh gruppakh”, Fundament. prikl. matem., 15:1 (2009), 81–98 | MR

[14] Fuks L., Beskonechnye abelevy gruppy, v 2 t., v. 1, Mir, M., 1974, 335 pp.

[15] Fuks L., Beskonechnye abelevy gruppy, v 2 t., v. 2, Mir, M., 1977, 417 pp.