Dissipation of Kelvin–Helmholtz waves in vibrational non-equilibrium diatomic gas
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 68-80
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of the equations of twotemperature aerodynamics, the influence of vibrational relaxation on suppression of the Kelvin–Helmholtz instability in a developing in time shift layer of vibrational non-equilibrium diatomic gas is numerically investigated.
Keywords: Kelvin–Helmholtz instability, vibrational relaxation, kinetic energy of the disturbances, dissipation.
@article{VTGU_2012_1_a8,
     author = {I. V. Ershov and K. I. Zyryanov},
     title = {Dissipation of {Kelvin{\textendash}Helmholtz} waves in vibrational non-equilibrium diatomic gas},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {68--80},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_1_a8/}
}
TY  - JOUR
AU  - I. V. Ershov
AU  - K. I. Zyryanov
TI  - Dissipation of Kelvin–Helmholtz waves in vibrational non-equilibrium diatomic gas
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 68
EP  - 80
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_1_a8/
LA  - ru
ID  - VTGU_2012_1_a8
ER  - 
%0 Journal Article
%A I. V. Ershov
%A K. I. Zyryanov
%T Dissipation of Kelvin–Helmholtz waves in vibrational non-equilibrium diatomic gas
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 68-80
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2012_1_a8/
%G ru
%F VTGU_2012_1_a8
I. V. Ershov; K. I. Zyryanov. Dissipation of Kelvin–Helmholtz waves in vibrational non-equilibrium diatomic gas. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 68-80. http://geodesic.mathdoc.fr/item/VTGU_2012_1_a8/

[1] Grigorev Yu. N., Ershov I. V., Zyryanov K. V., “Chislennoe modelirovanie voln Kelvina–Gelmgoltsa v slabo neravnovesnom molekulyarnom gaze”, Vychisl. tekhnologii, 13:5 (2008), 25–40 | Zbl

[2] Zhdanov V. M., Alievskii M. E., Protsessy perenosa i relaksatsii v molekulyarnykh gazakh, Nauka, M., 1989, 335 pp.

[3] Nagnibeda E. A., Kustova E. V., Kineticheskaya teoriya protsessov perenosa i relaksatsii v potokakh neravnovesnykh reagiruyuschikh gazov, Izd-vo S.-Peterburskogo un-ta, SPb., 2003, 272 pp.

[4] Osipov A. I., Uvarov A. V., “Kineticheskie i gazokineticheskie protsessy v neravnovesnoi molekulyarnoi fizike”, UFN, 162:11 (1992), 1–42 | DOI

[5] Grigorev Yu. N., Ershov I. V., Ershova E. E., “Vliyanie kolebatelnoi relaksatsii na pulsatsionnuyu aktivnost v techeniyakh vozbuzhdennogo dvukhatomnogo gaza”, PMTF, 45:3 (2004), 15–23 | Zbl

[6] Grigorev Yu. N., Ershov I. V., “Ustoichivost techenii kolebatelno vozbuzhdennykh gazov. Energeticheskii podkhod”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, 2011, no. 4(3), 735–737 | MR

[7] Grigorev Yu. N., Ershov I. V., “Lineinaya ustoichivost nevyazkogo sdvigovogo techeniya kolebatelno vozbuzhdennogo dvukhatomnogo gaza”, PMM, 45:4 (2011), 581–593 | MR

[8] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981, 320 pp. | MR | Zbl

[9] Patnaik P. C., Sherman F. S., Corcos G. M., “A numerical simulation of Kelvin–Helmholtz waves of finite amplitude”, J. Fluid Mech., 73, Part 2 (1976), 215–239 | DOI

[10] Vinnichenko N. A., Nikitin N. V., Uvarov A. V., “Vikhrevaya dorozhka Karmana v kolebatelno-neravnovesnom gaze”, Izv. RAN. MZhG, 2005, no. 5, 107–114 | Zbl

[11] Grigorev Yu. N., Ershov I. V., “Podavlenie vikhrevykh vozmuschenii relaksatsionnym protsessom v techeniyakh vozbuzhdennogo molekulyarnogo gaza”, PMTF, 44:4 (2003), 22–34 | MR | Zbl