E-engelian abelian groups of step $\le2$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 54-60
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that periodicity of the automorphism group or weak transitivity of an E-engelian torsion free group of step $\le2$ implies commutativity of its endomorphism ring. Some properties of the engelian ring of step $2$ are established. It is also shown that the endomorphism ring of a weakly transitive torsion free group is semiprime.
Keywords: commutator of endomorphisms, prime radical, nil radical, weakly transitive torsion free group.
Mots-clés : E-solvable group
@article{VTGU_2012_1_a6,
     author = {A. R. Chekhlov},
     title = {E-engelian abelian groups of step~$\le2$},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {54--60},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_1_a6/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - E-engelian abelian groups of step $\le2$
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 54
EP  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_1_a6/
LA  - ru
ID  - VTGU_2012_1_a6
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T E-engelian abelian groups of step $\le2$
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 54-60
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2012_1_a6/
%G ru
%F VTGU_2012_1_a6
A. R. Chekhlov. E-engelian abelian groups of step $\le2$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 54-60. http://geodesic.mathdoc.fr/item/VTGU_2012_1_a6/

[1] Chekhlov A. R., “Ob abelevykh gruppakh s normalnym koltsom endomorfizmov”, Algebra i logika, 48:4 (2009), 520–539 | MR | Zbl

[2] Chekhlov A. R., “E-nilpotentnye i E-razreshimye abelevy gruppy klassa 2”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 1(9), 59–71

[3] Chekhlov A. R., “O kommutatorno invariantnykh podgruppakh abelevykh grupp”, Sib. matem. zhurn., 51:5 (2010), 1163–1174 | MR | Zbl

[4] Chekhlov A. R., “Nekotorye primery E-razreshimykh grupp”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 3(11), 69–76

[5] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974; т. 2, Мир, М., 1977

[6] Bekker I. Kh., Kozhukhov S. F., Avtomorfizmy abelevykh grupp bez krucheniya, Tomsk, 1988

[7] Khukhro E. I., “O $p$-gruppakh avtomorfizmov abelevykh $p$-grupp”, Algebra i logika, 39:3 (2000), 359–371 | MR | Zbl

[8] Zhurtov A. Kh., “O kvadratichnykh avtomorfizmakh abelevykh grupp”, Algebra i logika, 39:3 (2000), 320–328 | MR | Zbl

[9] Dobrusin Yu. B., “O prodolzheniyakh chastichnykh endomorfizmov abelevykh grupp bez krucheniya. 2”, Abelevy gruppy i moduli, 5, 1985, 31–41

[10] Chekhlov A. R., “Ob odnom klasse endotranzitivnykh grupp”, Matem. zametki, 69:6 (2001), 944–949 | DOI | MR | Zbl

[11] Chekhlov A. R., “E-razreshimye moduli”, Fundament. i prikl. matem., 16:7 (2010), 221–236 | MR

[12] Chekhlov A. R., “O nekotorykh klassakh nilgrupp”, Matem. zametki, 91:2 (2012), 297–304 | DOI | MR | Zbl