Estimation of the parametric regression with a pulse noise by discrete time observations
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 20-35
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the problem of parametric estimation in a continuous time linear parametric regression model with a non-Gaussian Ornstein–Uhlenbeck process by discrete time observations. Improved estimates with smaller mean square risk as compared with the ordinary least square estimates are proposed for the unknown regression parameters. The asymptotic minimaxity of these estimates in the sense of the robust risk has been proved.
Keywords: non-Gaussian parametric regression, improved estimation, least square estimates, Ornstein–Uhlenbeck process, quadratic risk, minimaxity.
Mots-clés : pulse noise
@article{VTGU_2012_1_a3,
     author = {V. V. Konev and E. A. Pchelintsev},
     title = {Estimation of the parametric regression with a~pulse noise by discrete time observations},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {20--35},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_1_a3/}
}
TY  - JOUR
AU  - V. V. Konev
AU  - E. A. Pchelintsev
TI  - Estimation of the parametric regression with a pulse noise by discrete time observations
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 20
EP  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_1_a3/
LA  - ru
ID  - VTGU_2012_1_a3
ER  - 
%0 Journal Article
%A V. V. Konev
%A E. A. Pchelintsev
%T Estimation of the parametric regression with a pulse noise by discrete time observations
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 20-35
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2012_1_a3/
%G ru
%F VTGU_2012_1_a3
V. V. Konev; E. A. Pchelintsev. Estimation of the parametric regression with a pulse noise by discrete time observations. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 20-35. http://geodesic.mathdoc.fr/item/VTGU_2012_1_a3/

[1] Barndorff-Nielsen O. E., Shephard N., “Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial mathematics”, J. Royal Stat. Soc., 63 (2001), 167–241 | DOI | MR | Zbl

[2] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979, 528 pp. | MR

[3] Delong L., Kluppelberg C., “Optimal investment and consumption in a Black–Scholes market with Levy driven stochastic coefficients”, Annals of Applied Probability, 18:3 (2008), 879–908 | DOI | MR | Zbl

[4] James W., Stein Ch., “Estimation with quadratic loss”, Proc. of the Fourth Berkeley Symposium on Mathematics Statistics and Probability, v. 1, University of California Press, Berkeley, 1961, 361–380 | MR

[5] Baranchik A., “A family of minimax estimators of the mean of a multivariate normal distribution”, Ann. Math. Statist., 41 (1970), 642–645 | DOI | MR

[6] Efron B., Morris C., “Families of minimax estimators of the mean of a multivariate normal distribution”, Ann. Statist., 4 (1976), 11–21 | DOI | MR | Zbl

[7] Lehmann E. L., Casella G., Theory of Point Estimation, 2nd edition, Springer-Verlag Inc., New York, 1998, 617 pp. | MR

[8] Zaks Sh. (Zacks S.), Teoriya statisticheskikh vyvodov, Mir, M., 1975, 776 pp.

[9] Berger J. O., Bock M. E., Brown L. D. et al., “Minimax estimation of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix”, Ann. Statist., 5 (1977), 763–771 | DOI | MR | Zbl

[10] Berger J. O., Haff L. R., “A class of minimax estimators of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix”, Statist. Decisions, 1 (1983), 105–129 | MR | Zbl

[11] Gleser L. J., “Minimax estimators of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix”, Ann. Statist., 14 (1986), 1625–1633 | DOI | MR | Zbl

[12] Fourdrinier D., Statistique Inférentielle, Dunod, 2002, 336 pp.

[13] Pchelintsev E. A., “Protsedura Dzheimsa–Steina dlya uslovno-gaussovskoi regressii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2011, no. 4(16), 6–17

[14] Stein Ch., “Estimation of the mean of a multivariate normal distribution”, Ann. Statist., 9:6 (1981), 1135–1151 | DOI | MR | Zbl