Mots-clés : pulse noise
@article{VTGU_2012_1_a3,
author = {V. V. Konev and E. A. Pchelintsev},
title = {Estimation of the parametric regression with a~pulse noise by discrete time observations},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {20--35},
year = {2012},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2012_1_a3/}
}
TY - JOUR AU - V. V. Konev AU - E. A. Pchelintsev TI - Estimation of the parametric regression with a pulse noise by discrete time observations JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2012 SP - 20 EP - 35 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTGU_2012_1_a3/ LA - ru ID - VTGU_2012_1_a3 ER -
%0 Journal Article %A V. V. Konev %A E. A. Pchelintsev %T Estimation of the parametric regression with a pulse noise by discrete time observations %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2012 %P 20-35 %N 1 %U http://geodesic.mathdoc.fr/item/VTGU_2012_1_a3/ %G ru %F VTGU_2012_1_a3
V. V. Konev; E. A. Pchelintsev. Estimation of the parametric regression with a pulse noise by discrete time observations. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 20-35. http://geodesic.mathdoc.fr/item/VTGU_2012_1_a3/
[1] Barndorff-Nielsen O. E., Shephard N., “Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial mathematics”, J. Royal Stat. Soc., 63 (2001), 167–241 | DOI | MR | Zbl
[2] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979, 528 pp. | MR
[3] Delong L., Kluppelberg C., “Optimal investment and consumption in a Black–Scholes market with Levy driven stochastic coefficients”, Annals of Applied Probability, 18:3 (2008), 879–908 | DOI | MR | Zbl
[4] James W., Stein Ch., “Estimation with quadratic loss”, Proc. of the Fourth Berkeley Symposium on Mathematics Statistics and Probability, v. 1, University of California Press, Berkeley, 1961, 361–380 | MR
[5] Baranchik A., “A family of minimax estimators of the mean of a multivariate normal distribution”, Ann. Math. Statist., 41 (1970), 642–645 | DOI | MR
[6] Efron B., Morris C., “Families of minimax estimators of the mean of a multivariate normal distribution”, Ann. Statist., 4 (1976), 11–21 | DOI | MR | Zbl
[7] Lehmann E. L., Casella G., Theory of Point Estimation, 2nd edition, Springer-Verlag Inc., New York, 1998, 617 pp. | MR
[8] Zaks Sh. (Zacks S.), Teoriya statisticheskikh vyvodov, Mir, M., 1975, 776 pp.
[9] Berger J. O., Bock M. E., Brown L. D. et al., “Minimax estimation of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix”, Ann. Statist., 5 (1977), 763–771 | DOI | MR | Zbl
[10] Berger J. O., Haff L. R., “A class of minimax estimators of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix”, Statist. Decisions, 1 (1983), 105–129 | MR | Zbl
[11] Gleser L. J., “Minimax estimators of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix”, Ann. Statist., 14 (1986), 1625–1633 | DOI | MR | Zbl
[12] Fourdrinier D., Statistique Inférentielle, Dunod, 2002, 336 pp.
[13] Pchelintsev E. A., “Protsedura Dzheimsa–Steina dlya uslovno-gaussovskoi regressii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2011, no. 4(16), 6–17
[14] Stein Ch., “Estimation of the mean of a multivariate normal distribution”, Ann. Statist., 9:6 (1981), 1135–1151 | DOI | MR | Zbl