On mutual ``orthogonality'' of classes of the spaces $C_p(X)$ and~$L_p(Y)$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 16-19
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article, it is proved that none of the infinitedimensional spaces $C_p(X)$, $L_p(Y)$, or a normed space $E$ can be embedded as a complementable subspace into another by a linear homeomorphism.
Keywords:
space of continuous functions, linear homeomorphic embedding, complementable subspace.
@article{VTGU_2012_1_a2,
author = {S. P. Gul'ko and V. R. Lazarev and T. E. Khmyleva},
title = {On mutual ``orthogonality'' of classes of the spaces $C_p(X)$ and~$L_p(Y)$},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {16--19},
publisher = {mathdoc},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2012_1_a2/}
}
TY - JOUR AU - S. P. Gul'ko AU - V. R. Lazarev AU - T. E. Khmyleva TI - On mutual ``orthogonality'' of classes of the spaces $C_p(X)$ and~$L_p(Y)$ JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2012 SP - 16 EP - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2012_1_a2/ LA - ru ID - VTGU_2012_1_a2 ER -
%0 Journal Article %A S. P. Gul'ko %A V. R. Lazarev %A T. E. Khmyleva %T On mutual ``orthogonality'' of classes of the spaces $C_p(X)$ and~$L_p(Y)$ %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2012 %P 16-19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2012_1_a2/ %G ru %F VTGU_2012_1_a2
S. P. Gul'ko; V. R. Lazarev; T. E. Khmyleva. On mutual ``orthogonality'' of classes of the spaces $C_p(X)$ and~$L_p(Y)$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 16-19. http://geodesic.mathdoc.fr/item/VTGU_2012_1_a2/