On mutual “orthogonality” of classes of the spaces $C_p(X)$ and $L_p(Y)$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 16-19
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, it is proved that none of the infinitedimensional spaces $C_p(X)$, $L_p(Y)$, or a normed space $E$ can be embedded as a complementable subspace into another by a linear homeomorphism.
Keywords: space of continuous functions, linear homeomorphic embedding, complementable subspace.
@article{VTGU_2012_1_a2,
     author = {S. P. Gul'ko and V. R. Lazarev and T. E. Khmyleva},
     title = {On mutual {\textquotedblleft}orthogonality{\textquotedblright} of classes of the spaces $C_p(X)$ and~$L_p(Y)$},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {16--19},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_1_a2/}
}
TY  - JOUR
AU  - S. P. Gul'ko
AU  - V. R. Lazarev
AU  - T. E. Khmyleva
TI  - On mutual “orthogonality” of classes of the spaces $C_p(X)$ and $L_p(Y)$
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 16
EP  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_1_a2/
LA  - ru
ID  - VTGU_2012_1_a2
ER  - 
%0 Journal Article
%A S. P. Gul'ko
%A V. R. Lazarev
%A T. E. Khmyleva
%T On mutual “orthogonality” of classes of the spaces $C_p(X)$ and $L_p(Y)$
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 16-19
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2012_1_a2/
%G ru
%F VTGU_2012_1_a2
S. P. Gul'ko; V. R. Lazarev; T. E. Khmyleva. On mutual “orthogonality” of classes of the spaces $C_p(X)$ and $L_p(Y)$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 16-19. http://geodesic.mathdoc.fr/item/VTGU_2012_1_a2/

[1] Arkhangelskii A. V., Topologicheskie prostranstva funktsii, Izd-vo MGU, M., 1989 | MR