3D regimes of conjugate natural convection in a closed cube
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 119-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical analysis of 3D regimes of natural convection in a closed cube with finite thickness walls has been carried out. The external surfaces of two opposite sides were kept at constant temperatures, while the rest were adiabatic. A mathematical model formulated in dimensionless primitive variables “velocity–pressure–temperature” has been solved by means of the finite volume method. The influence scales of a temperature difference and a thickness of solid walls on thermohydrodynamic parameters have been determined.
Keywords: conjugate heat transfer, natural convection, cube, mathematical simulation, finite volume method.
@article{VTGU_2012_1_a13,
     author = {M. A. Sheremet},
     title = {3D regimes of conjugate natural convection in a~closed cube},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {119--126},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_1_a13/}
}
TY  - JOUR
AU  - M. A. Sheremet
TI  - 3D regimes of conjugate natural convection in a closed cube
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 119
EP  - 126
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_1_a13/
LA  - ru
ID  - VTGU_2012_1_a13
ER  - 
%0 Journal Article
%A M. A. Sheremet
%T 3D regimes of conjugate natural convection in a closed cube
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 119-126
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2012_1_a13/
%G ru
%F VTGU_2012_1_a13
M. A. Sheremet. 3D regimes of conjugate natural convection in a closed cube. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 119-126. http://geodesic.mathdoc.fr/item/VTGU_2012_1_a13/

[1] Valencia L., Pallares J., Cuesta I., Grau F. X., “Turbulent Rayleigh–Benard convection of water in cubical cavities: A numerical and experimental study”, Int. J. Heat Mass Transfer, 50 (2007), 3203–3215 | DOI | Zbl

[2] Kuznetsov G. V., Sheremet M. A., “Conjugate natural convection with radiation in an enclosure”, Int. J. Heat Mass Transfer, 52 (2009), 2215–2223 | DOI

[3] Kuznetsov G. V., Sheremet M. A., “Konvektsiya Releya–Benara v zamknutom ob'eme so stenkami konechnoi tolschiny”, Matematicheskoe modelirovanie, 21:10 (2009), 111–122 | Zbl

[4] Liu Y., Phan-Thien N., Kemp R., Luo X.-L., “Three-dimensional coupled conductionconvection problem for three chips mounted on a substrate in an enclosure”, Numerical Heat Transfer, Part A: Applications, 32 (1997), 149–167 | DOI

[5] Sheremet M. A., “Matematicheskoe modelirovanie nestatsionarnoi sopryazhennoi termogravitatsionnoi konvektsii v zamknutom naklonnom tsilindre”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, 2011, no. 4(3), 1272–1274

[6] Jaluria Y., Design and Optimization of Thermal Systems, McGraw-Hill, New York, 1998, 626 pp. | Zbl

[7] Sheremet M. A., “Numerical Simulation of Turbulent Natural Convection in an Electronic Enclosure”, Proc. of the 11th International Conference and Seminar on Micro/Nanotechnologies and Electron Devices EDM' 2010 (June 30 – July 4 2010, Erlagol, Russia), 177–180

[8] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1978, 736 pp. | MR

[9] Lykov A. V., Teoriya teploprovodnosti, Vysshaya shkola, M., 1967, 600 pp. | Zbl

[10] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984, 152 pp.

[11] Versteeg H. K., Malalasekera W., An Introduction to Computational Fluid Dynamics. The Finite Volume Method, Wiley, N.Y., 1995, 257 pp.

[12] Ilin V. P., Metody nepolnoi faktorizatsii dlya resheniya algebraicheskikh sistem, Fizmatlit, M., 1995, 288 pp. | MR

[13] Liaqat A., Baytas A. C., “Conjugate natural convection in a square enclosure containing volumetric sources”, Int. J. Heat Mass Transfer, 44 (2001), 3273–3280 | DOI | Zbl

[14] Bessonov O. A., Brailovskay V. A., Nikitin S. A., Polezhaev V. I., “Three-dimensional natural convection in a cubical enclosure: a benchmark numerical solution”, Proc. of Int. Symposium on Advances in Computational Heat Transfer, Turkey, 1997, 157–165

[15] Fusegi T., Hyin J. M., Kuwahara K., “A numerical study of 3D natural convection in a differently heated cubical enclosure”, Int. J. Heat Mass Transfer, 34 (1991), 1543–1557 | DOI

[16] Artemev V. K., Rozhkov M. M., “Chislennoe modelirovanie trekhmernoi estestvennoi konvektsii v kubicheskoi polosti”, Trudy XIII Shkoly-seminara molodykh uchenykh i spetsialistov pod rukovodstvom akademika RAN A. I. Leonteva “Fizicheskie osnovy eksperimentalnogo i matematicheskogo modelirovaniya protsessov gazodinamiki i teplomassoobmena v energeticheskikh ustanovkakh”, v. 1, Sankt-Peterburg, 2001, 153–157

[17] Ginkin V. P., Ganina S. M., “Metod i programma rascheta trekhmernoi konvektsii na setkakh bolshoi razmernosti”, Trudy 3 Rossiiskoi natsionalnoi konferentsii po teploobmenu, v. 3, Moskva, 2002, 49–52

[18] Kuznetsov G. V., Sheremet M. A., “A numerical simulation of double-diffusive conjugate natural convection in an enclosure”, Int. J. Thermal Sciences, 50 (2011), 1878–1886 | DOI

[19] Sheremet M. A., “Matematicheskoe modelirovanie estestvennoi konvektsii v zamknutoi kvadratnoi polosti s teploprovodnymi stenkami konechnoi tolschiny”, Nauchno-prakticheskii zhurnal “Fiz-Mat”, 2011, no. 1–2, 7–12