Formation of product macrostructure in unsteady SHS-process
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 103-114
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The two-temperature and two-velocity mathematical model of gasless combustion of cylindrical porous samples based on heterogeneous mechanics with allowance for structural and phase transformations is proposed and studied. The basic problems of modeling are discussed. The dynamics of formation of a porous product structure from the ignition stage to the steady regime of combustion is considered. The change of combustion parameters for the unsteady mode is analyzed depending on the diameter of the sample. Structural oscillations resulting in exfoliation of the sample in the unstable combustion mode were revealed.
Keywords: self-propagating high-temperature synthesis, macrostructural formation, modeling.
@article{VTGU_2012_1_a11,
     author = {V. G. Prokof'ev and V. K. Smolyakov},
     title = {Formation of product macrostructure in unsteady {SHS-process}},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {103--114},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_1_a11/}
}
TY  - JOUR
AU  - V. G. Prokof'ev
AU  - V. K. Smolyakov
TI  - Formation of product macrostructure in unsteady SHS-process
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 103
EP  - 114
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_1_a11/
LA  - ru
ID  - VTGU_2012_1_a11
ER  - 
%0 Journal Article
%A V. G. Prokof'ev
%A V. K. Smolyakov
%T Formation of product macrostructure in unsteady SHS-process
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 103-114
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2012_1_a11/
%G ru
%F VTGU_2012_1_a11
V. G. Prokof'ev; V. K. Smolyakov. Formation of product macrostructure in unsteady SHS-process. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 103-114. http://geodesic.mathdoc.fr/item/VTGU_2012_1_a11/

[1] Nigmatulin R. I., Dinamika mnogofaznykh sred, v. 1, Mir, M., 1987, 464 pp.

[2] Smolyakov V. K., “Makrostrukturnye prevrascheniya v protsessakh bezgazovogo goreniya”, FGV, 26:3 (1990), 55–61

[3] Nekrasov E. A., Maksimov Yu. M. i dr., “Vliyanie kapillyarnogo rastekaniya na rasprostranenie volny goreniya v bezgazovykh sistemakh”, FGV, 14:5 (1978), 26–33

[4] Smolyakov V. K., “Modeli goreniya SVS-sistem, uchityvayuschie makrostrukturnye prevrascheniya”, IFZh, 65:4 (1993), 485–489

[5] Smolyakov V. K., Maksimov Ya. M., “Structural transformation of powder media in the wave of self-propagating high-temperature synthesis”, Int. J. Sef-Propagating High-Temperature Synthesis, 8:2 (1999), 221–250

[6] Merzhanov A. G., “Regularities and mechanism of combustion of pyrotechnic titanium-boron mixtures”, Fourth Symp. on Chem. Problems Connected with the Stability of Explos. (Molle, Sweden, May 31 – June 2, 1976), 381–401

[7] Naiborodenko Yu. S., Kasatskii N. G. i dr., “Vliyanie termicheskoi obrabotki v vakuume na gorenie bezgazovykh sistem”, Khimicheskaya fizika protsessov goreniya i vzryva. Gorenie kondensirovannykh i geterogennykh sistem, Chernogolovka, 1980, 74–77

[8] Scherbakov V. A., Merzhanov A. G., “Samorasprostranyayuschiisya vysokotemperaturnyi sintez metallokeramicheskogo penomateriala”, DAN, 354:3 (1997), 346–349

[9] Smolyakov V. K., Maksimov Yu. M., Prokofev V. G., “Dinamika formirovaniya struktury produkta pri gorenii bezgazovykh sistem”, Matematicheskoe modelirovanie goreniya i vzryva vysokoenergeticheskikh sistem, ed. I. M. Vasenin, Izd-vo Tom. un-ta, Tomsk, 2006, 221–315

[10] Prokofiev V. G., Smolyakov V. K., “Combustion of gasless systems with a variable porosity and an external gas exchange”, Int. J. Self-Propagating High-Temperature Synthesis, 15:2 (2006), 133–157

[11] Prokofev V. G., Smolyakov V. K., “Vliyanie strukturnykh faktorov na nestatsionarnye rezhimy goreniya bezgazovykh sistem”, FGV, 39:2 (2003), 56–66

[12] Stovbun V. P., Kedrova T. I., Barzykin V. V., “Zazhiganie sistem s tugoplavkimi produktami reaktsii”, Fizika goreniya i vzryva, 8:3 (1972), 349–354

[13] Shkadinskii K. G., Khaikin B. I., Merzhanov A. G., “Rasprostranenie pulsiruyuschego fronta ekzotermicheskoi reaktsii v kondensirovannoi faze”, FGV, 7:1 (1971), 19–28

[14] Kamynina O. K., Rogachev A. S., Umarov L. M., “Dinamika deformatsii reagiruyuschei sredy pri bezgazovom gorenii”, FGV, 39:5 (2003), 69–73

[15] Mukasyan A. S., Merzhanov A. G., Martynenko V. M. i dr., “O mekhanizme i zakonomernostyakh goreniya kremniya v azote”, FGV, 22:5 (1986), 43–49

[16] Kirdyashkin A. I., Maximov Ya. M., Gorenko L. K. et al., “Peculiarities of the convective motion of the melt in the burning ware of the power mixture”, Flame Structure, v. 2, Nauka, Novosibirsk, 1991, 538–541

[17] Rogachev A. S., Mukasyan A. S., Varma A., “Mikrostruktura samorasprostranyayuschegosya voln ekzotermicheskikh reaktsii v geterogennykh sredakh”, DAN, 366:6 (1999), 777–780

[18] Merzhanov A. G., Mukasyan A. S., Rogachev A. S. i dr., “Mikrostruktura fronta goreniya v geterogennykh bezgazovykh sredakh (na primere goreniya sistemy 5Ti+3Si)”, FGV, 32:6 (1996), 68–81

[19] Smolyakov V. K., “O “sherokhovatosti” fronta bezgazovogo goreniya”, FGV, 37:3 (2001), 33–44