Proper fully invariant subgroups of torsion free groups isomorphic to the group
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 11-15
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, we study torsion free groups containing proper fully invariant subgroups isomorphic to the group.
Keywords: abelian group, fully invariant subgroup
Mots-clés : $IF$-group, torsion free group.
@article{VTGU_2012_1_a1,
     author = {S. Y. Grinshpon and M. M. Nikolskaya},
     title = {Proper fully invariant subgroups of torsion free groups isomorphic to the group},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {11--15},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2012_1_a1/}
}
TY  - JOUR
AU  - S. Y. Grinshpon
AU  - M. M. Nikolskaya
TI  - Proper fully invariant subgroups of torsion free groups isomorphic to the group
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2012
SP  - 11
EP  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2012_1_a1/
LA  - ru
ID  - VTGU_2012_1_a1
ER  - 
%0 Journal Article
%A S. Y. Grinshpon
%A M. M. Nikolskaya
%T Proper fully invariant subgroups of torsion free groups isomorphic to the group
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2012
%P 11-15
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2012_1_a1/
%G ru
%F VTGU_2012_1_a1
S. Y. Grinshpon; M. M. Nikolskaya. Proper fully invariant subgroups of torsion free groups isomorphic to the group. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2012), pp. 11-15. http://geodesic.mathdoc.fr/item/VTGU_2012_1_a1/

[1] Beaumont R. A., Pierce R. S., “Isomorphic direct summands of abelian groups”, Math. Annalen, 153 (1964), 21–37 | DOI | MR

[2] Monk G. S., “Abelian p-groups without proper isomorphic pure dense subgroups”, Ill. J. Math., 14:1 (1970), 164–177 | MR | Zbl

[3] Goldsmith B., Ohogain S., Wallutis S., “Quasi-minimal groups”, Proc. Amer. Math. Soc., 132:8 (2004), 2185–2195 | DOI | MR | Zbl

[4] Savinkova M. M., “$U$-posledovatelnosti i primarnye gruppy, soderzhaschie sobstvennye izomorfnye sebe vpolne kharakteristicheskie podgruppy”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2008, no. 2(3), 56–60

[5] Grinshpon S. Ya., Nikolskaya M. M., “Primarnye $IF$-gruppy”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2011, no. 3(15), 25–31

[6] Grinshpon S. Ya., Nikolskaya (Savinkova) M. M., “Fully invariant subgroups of Abelian pgroups with finite Ulm–Kaplansky invariants”, Communications in Algebra, 39:11 (2011), 4273–4282 | DOI | MR | Zbl

[7] Grinshpon S. Ya., “O stroenii vpolne kharakteristicheskikh podgrupp abelevykh grupp bez krucheniya”, Abelevy gruppy i moduli, 1981, 56–92 | MR | Zbl

[8] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974, 336 pp.

[9] Grinshpon S. Ya., “Vpolne kharakteristicheskie podgruppy abelevykh grupp i vpolne tranzitivnost”, Fundament. i prikl. matem., 8:2 (2002), 407–473 | MR | Zbl

[10] Grinshpon S. Ya., Krylov P. A., “Fully invariant subgroups, full transitivity and homomorphism groups of Abelian groups”, J. Math. Sciences, 128:3 (2005), 2894–2997 | DOI | MR | Zbl