@article{VTGU_2011_4_a1,
author = {E. A. Pchelintsev},
title = {The {James{\textendash}Stein} procedure for a~conditionally {Gaussian} regression},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {6--17},
year = {2011},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2011_4_a1/}
}
E. A. Pchelintsev. The James–Stein procedure for a conditionally Gaussian regression. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2011), pp. 6-17. http://geodesic.mathdoc.fr/item/VTGU_2011_4_a1/
[1] Berger J. O., Haff L. R., “A class of minimax estimators of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix”, Statist. Decisions, 1 (1983), 105–129 | MR | Zbl
[2] Efron B., Morris C., “Families of minimax estimators of the mean of a multivariate normal distribution”, Ann. Statist., 4:1 (1976), 11–21 | DOI | MR | Zbl
[3] Fourdrinier D., Statistique inférentielle, Dunod, 2002, 336 pp.
[4] Fourdrinier D., Pergamenshchikov S., “Improved selection model method for the regression with dependent noise”, Ann. Inst. Statist. Math., 59:3 (2007), 435–464 | DOI | MR | Zbl
[5] Fourdrinier D., Strawderman W. E., William E., “A unified and generalized set of shrinkage bounds on minimax Stein estimates”, J. Multivariate Anal., 99 (2008), 2221–2233 | DOI | MR | Zbl
[6] Gleser L. J., “Minimax estimators of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix”, Ann. Statist., 14:4 (1986), 1625–1633 | DOI | MR | Zbl
[7] James W., Stein C., “Estimation with quadratic loss”, Proceedings of the Fourth Berkeley Symposium on Mathematics Statistics and Probability, v. 1, University of California Press, Berkeley, 1961, 361–380 | MR
[8] Konev V., Pergamenchtchikov S., Efficient robust nonparametric estimation in a semimartingale regression model, 2010, arXiv: 1010.3366[math.ST]
[9] Stein C., “Estimation of the mean of a multivariate normal distribution”, Ann. Statist., 9:6 (1981), 1135–1151 | DOI | MR | Zbl