@article{VTGU_2011_3_a5,
author = {G. G. Pestov},
title = {Investigations on ordered groups and fields in {Tomsk} state university},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {41--58},
year = {2011},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2011_3_a5/}
}
G. G. Pestov. Investigations on ordered groups and fields in Tomsk state university. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2011), pp. 41-58. http://geodesic.mathdoc.fr/item/VTGU_2011_3_a5/
[1] Pestov G. G., “K teorii sechenii v uporyadochennykh polyakh”, Sib. matem. zhurn., 42:6 (2001), 1350–1360 | MR | Zbl
[2] Delon Françoise, “Plongement dense d'fun corp ordonne dans sa cloture reelle”, J. Symb. Logic, 56:3, Sept. (1991), 974–980 | DOI | MR | Zbl
[3] Hauschield K., “Über die Konstruktion von ErweiterungskörPern zu nichtarchimedisch angeordneten KörPern, mit Hilfe von Holderschen Schnitten”, Wiss. Z. Humboldt-Univ., Berlin Math.-Natur. Reihe, 15 (1966), 685–686 | MR
[4] Pestov G. G., Stroenie uporyadochennykh polei, Izd-vo Tom. un-ta, Tomsk, 1980 | MR
[5] Pestov G. G., “Simmetriya sechenii v uporyadochennom pole”, Izbr. dokl. Mezhdunar. konf. “Vsesibirskie chteniya po matematike i mekhanike”, v. 1, Izd-vo Tom. un-ta, Tomsk, 1997, 198–202
[6] Kokorin A. I., Kopytov V. M., Lineino uporyadochennye gruppy, Nauka, M., 1972 | MR | Zbl
[7] Galanova N. Yu., Konfinalnost i simmetrichnost sechenii v uporyadochennykh polyakh. Issledovaniya po matematicheskomu analizu i algebre, Izd-vo Tom. un-ta, Tomsk, 1998
[8] Fuchs L., Partially ordered algebraic systems, Pergamon Press, 1963 | MR | Zbl
[9] Pestov G. G., “Teoremy o zamykaniyakh lineino uporyadochennykh polei”, Vestnik Tomskogo gosudarstvennogo universiteta. Byulleten operativnoi nauchnoi informatsii. Uporyadochennye polya i gruppy, 2004, no. 21, fevral, 34–38
[10] Baer R., “Dichte, Archimedizitat und Starrheit geordneter Korper”, Math. Ann., 168:3 (1970), 165–205 | DOI | MR
[11] Macai E., “Notes on real closed fields”, Ann. Univ. Sci. Budapest., Sectio Mat., 13 (1970), 35–55 | MR
[12] Galanova N. Yu., Pestov G. G., “Simmetriya sechenii v polyakh formalnykh stepennykh ryadov”, Algebra i logika, 47:2 (2008), 174–185 | MR | Zbl
[13] Pestov G. G., “Ob arkhimedovskoi polnote i ob izomorfizme uporyadochennykh polei”, Izbr. dokl. Mezhdunar. konf. “Vsesibirskie chteniya po matematike i mekhanike”, v. 1, Izd-vo Tom. un-ta, Tomsk, 1997, 203–208
[14] Galanova N. Yu., “Simmetriya sechenii v polyakh formalnykh stepennykh ryadov”, Algebra i logika, 42:1 (2003), 26–36 | MR | Zbl
[15] Galanova N. Yu., “O stroenii nestandartnoi veschestvennoi pryamoi”, Izbr. dokl. Mezhdunar. konf. “Vsesibirskie chteniya po matematike i mekhanike”, v. 1, Izd-vo Tom. un-ta, Tomsk, 1997, 65–70
[16] Galanova N. Yu., “Symmetric and asymmetric gaps in fields of power series”, Serdica Math. J., 30:4 (2004), 495–504 | MR | Zbl
[17] Galanova N. Yu., “An investigation of the fields of bounded formal power series by means of theory of cuts”, Acta Appl. Math., 85:1–3 (2005), 121–126 | DOI | MR | Zbl
[18] Galanova N. Yu., K teorii sechenii v uporyadochennykh polyakh, dis. $\dots$ kand. fiz.-mat. nauk, Tomsk, 1999
[19] Dales H. J., Woodin H., Super real fields, Clarenden Press, Oxford, 1996 | MR | Zbl
[20] Matsuisita S., “Sur la Puissance des orders dans un groupe libre”, Proc. Koninkl. Nederl. Akad. Wet. A, 56 (1953), 15–16 | MR
[21] Sperner E., “Beziehungen zwischen geometrischer und agebraischer Anordnung”, Arch. Math., 1:2 (1948), 148–153 | DOI | MR | Zbl
[22] Glock E., “Die Orientierungsfunctionen eines affinen raumes”, Math. Z., 78:4 (1962), 319–360 | DOI | MR | Zbl
[23] Novoa L. G., “On $n$-ordered sets and order completeness”, Pacific J. Math., 15:4 (1965), 1337–1345 | DOI | MR | Zbl
[24] Terre A. I., Elementy geometrii $n$-mernogo poryadka, Dep. v VINITI 2.12.1982 No 5941-82, Tomsk, 1982, 35 pp.
[25] Pestov G. G., “$n$-uporyadochennye mnozhestva”, Trudy Irkutskogo gosuniversiteta, 74:6 (1970), 146–169
[26] Terre A. I., Dvumerno uporyadochennye tela i polya, dis. $\dots$ kand. fiz.-mat. nauk, Kishinëv, 1984
[27] Zabarina A. I., Pestov G. G., “Ob $n$-merno uporyadochennykh gruppakh”, Vestnik TGU, 2003, no. 280, 40–43
[28] Pestov G. G., Dvumerno uporyadochennye polya, TGU, 2003
[29] Tobolkin A. A., “Ob $n$-uporyadochennykh gruppakh”, X Vserossiiskaya konferentsiya studentov, aspirantov i molodykh uchënykh “Nauka i obrazovanie” (15–19 maya 2006 g.), v. 1, Estestvennye i tochnye nauki, ch. 2, 107–113
[30] Tobolkin A. A., “Teorema o multiplikativnoi gruppe kvaternionov”, Aktualnye problemy matematiki i metodiki eë prepodavaniya, materialy zaochnoi Vserossiiskoi nauchno-prakticheskoi konferentsii, Izd-vo TGPU, Tomsk, 2007
[31] Pestov G. G., Tobolkin A. A., “$k$-ploskosti v $n$-merno uporyadochennykh gruppakh”, Vestnik TGU, 2007, no. 301, 92–93
[32] Tobolkin A. A., K teorii $n$-uporyadochennykh grupp, dis. $\dots$ kand. fiz.-mat. nauk, Tomsk, 2009
[33] Pestov G. G., “$n$-dimensionally ordered groups”, Izbrannye voprosy algebry, sb. statei, posvyaschënnyi pamyati N. Ya. Medvedeva, Izd-vo Alt. gos. un-ta, Barnaul, 2007, 165–172
[34] Rieger L. S., “On the ordered and cyclically ordered groups I”, Vĕstnik Kral. C̆eskŭ Spol. Nauk, 1946, no. 6, 1–31 ; “II”, Vĕstnik Kral. C̆eskŭ Spol. Nauk, 1947, no. 1, 1–33 ; “III”, Vĕstnik Kral. C̆eskŭ Spol. Nauk, 1948, no. 1, 11–26 | MR | MR | MR
[35] Zabarina A. I., Pestov G. G., “O kriterii tsiklicheskoi uporyadochivaemosti gruppy”, Uporyadochennye mnozhestva i reshetki, Mezhvuz. nauch. sb., Vyp. 9, Izd-vo Sarat. un-ta, Saratov, 1986, 19–24 | MR
[36] Scott D., “On completing ordered fields”, Applications of Model theory to Algebra, Analisys and Probability, Internat. Sympos. (Passadena, Calif., 1967), Renehart and Winston, N.Y., 1969, 274–278 | MR
[37] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, GITTL, M., 1959
[38] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[39] Zheleva S. D., “O tsiklicheski uporyadochennykh gruppakh”, Sib. matem. zhurn., 17:5 (1976), 1046–1051 | MR | Zbl
[40] Swierczkowski S., “On cyclically ordered groups”, Fund. Math., 47 (1953), 161–167 | MR
[41] Pestov G. G., Tobolkin A. A., “K geometrii $n$-uporyadochennykh grupp”, Vestnik TGU, 2007, no. 1, 46–49
[42] Burbaki N., Algebra. Mnogochleny i polya. Uporyadochennye gruppy, Nauka, M., 1965 | MR
[43] Zabarina A. I., O tsiklicheski uporyadochennykh gruppakh, dis. $\dots$ kand. fiz.-mat. nauk, Tomsk, 1985
[44] Pestov G. G., “O klasse tsiklicheski uporyadochivaemykh grupp”, Vestnik Tomskogo gosudarstvennogo universiteta. Byulleten operativnoi nauchnoi informatsii. Uporyadochennye polya i gruppy, 2004, no. 21, fevral, 5–18
[45] Zabarina A. I., “K teorii tsiklicheski uporyadochennykh grupp”, Mat. zametki, 31:1 (1982), 3–12 | MR | Zbl
[46] Zabarina A. I., Pestov G. G., “K teoreme Sverchkovskogo”, Sib. matem. zhurn., 25:4 (1984), 46–53 | MR | Zbl
[47] Zabarina A. I., “O lineinom i tsiklicheskom poryadkakh v gruppe”, Sib. matem. zhurn., 26:2 (1985), 204–207 | MR | Zbl
[48] Pestov G. G., K teorii uporyadochennykh grupp i polei, dis. $\dots$ dokt. fiz-mat. nauk, Ekaterinburg, 2004
[49] Pestov G. G., Fomina E. A., “O secheniyakh v baze 2-uporyadochennogo polya”, Vestnik TGU, 2007, no. 301, 94–96
[50] Pestov G. G., Fomina E. A., “Konstruktsiya beskonechno uzkogo dvumerno uporyadochennogo polya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2007, no. 1, 50–53
[51] Fomina E. A., O dvumerno uporyadochennykh polyakh, dis. $\dots$ kand. fiz.-mat. nauk, Tomsk, 2009
[52] Fomina E. A., “Ob odnom klasse dvumerno uporyadochennykh polei”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2008, no. 3(4), 32–34
[53] Fomina E. A., “Kriterii beskonechno uzkogo polya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2009, no. 1(5), 27–30
[54] Pestov G. G., Fomina E. A., “Podpole V beskonechno blizkikh k baze elementov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2009, no. 2(6), 41–47
[55] Pestov G. G., Fomina E. A., “K teorii dvumerno uporyadochennykh polei”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2011, no. 2(14), 16–19
[56] Tobolkin A. A., “Dvumernyi poryadok na pryamom proizvedenii grupp”, Vestnik TGU, 2007, no. 297, 159–160
[57] Galanova N. Yu., “Klassifikatsiya veschestvenno zamknutykh polei moschnosti $\aleph_1$ s $(\aleph_1,\aleph_1)$ simmetrichnymi secheniyami”, Mezhdunarodnaya konferentsiya po matematike i mekhanike, Izbrannye doklady (16–18 sentyabrya 2003 goda), Tomsk, 2003, 9–12
[58] Galanova N. Yu., “Ob odnom klasse veschestvenno zamknutykh uporyadochennykh polei”, Issledovaniya po matematicheskomu analizu i algebre, 2001, no. 3, 53–56
[59] Pestov G. G., Tobolkin A. A., “K geometrii $n$-uporyadochennykh grupp”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2007, no. 1, 46–49
[60] Zabarina A. I., Pestov G. G., “Dvumerno uporyadochennye gruppy”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2011, no. 1(13), 5–8