Nonholonomic torses of the first kind in the four-dimensional Euclidean space
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2011), pp. 32-40
Cet article a éte moissonné depuis la source Math-Net.Ru
Nonholonomic three-dimensional distributions with zero total curvature of the first kind are considered in $E_4$. There exist three types of such distributions depending on the values of the principal curvatures of the first kind. Geometry of each of them is studied.
Keywords:
nonholonomic geometry, vector field.
Mots-clés : distribution, Pfaffian equation
Mots-clés : distribution, Pfaffian equation
@article{VTGU_2011_3_a4,
author = {N. M. Onishchuk and O. V. Tsokolova},
title = {Nonholonomic torses of the first kind in the four-dimensional {Euclidean} space},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {32--40},
year = {2011},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2011_3_a4/}
}
TY - JOUR AU - N. M. Onishchuk AU - O. V. Tsokolova TI - Nonholonomic torses of the first kind in the four-dimensional Euclidean space JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2011 SP - 32 EP - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTGU_2011_3_a4/ LA - ru ID - VTGU_2011_3_a4 ER -
%0 Journal Article %A N. M. Onishchuk %A O. V. Tsokolova %T Nonholonomic torses of the first kind in the four-dimensional Euclidean space %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2011 %P 32-40 %N 3 %U http://geodesic.mathdoc.fr/item/VTGU_2011_3_a4/ %G ru %F VTGU_2011_3_a4
N. M. Onishchuk; O. V. Tsokolova. Nonholonomic torses of the first kind in the four-dimensional Euclidean space. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2011), pp. 32-40. http://geodesic.mathdoc.fr/item/VTGU_2011_3_a4/
[1] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR
[2] Finikov S. P., Metod vneshnikh form Kartana, GITTL, M.–L., 1948
[3] Onischuk N. M., “Geometriya vektornogo polya v chetyrëkhmernom evklidovom prostranstve”, Mezhdunarodnaya konferentsiya po matematike i mekhanike, Izbrannye doklady, Tomsk, 2003, 60–68
[4] Onischuk N. M., “Negolonomnaya giperploskost v chetyrëkhmernom evklidovom prostranstve”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2008, no. 3(4), 10–21