Contact problem for plates with rigid inclusions intersecting the boundary
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2011), pp. 99-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with the unilateral contact problem for two elastic plates located at an angle to each other. Both plates contain rigid inclusions intersecting the contact area. The rigid inclusion in the top plate intersects also its external boundary. The lower plate is deformed in its plane with the top plate being vertically deformed. Using a variational method the solvability of the problem is established. Assuming that the solution is sufficiently smooth, the differential statement being equivalent to the variational formulation is justified. We analyze the limit case corresponding to the unbounded increase of the bending rigidity of the top plate.
Keywords: variational inequality, rigid inclusion, Kirchhoff–Love plate, contact problem, boundary intersection.
@article{VTGU_2011_3_a11,
     author = {T. A. Rotanova},
     title = {Contact problem for plates with rigid inclusions intersecting the boundary},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {99--107},
     year = {2011},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2011_3_a11/}
}
TY  - JOUR
AU  - T. A. Rotanova
TI  - Contact problem for plates with rigid inclusions intersecting the boundary
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2011
SP  - 99
EP  - 107
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2011_3_a11/
LA  - ru
ID  - VTGU_2011_3_a11
ER  - 
%0 Journal Article
%A T. A. Rotanova
%T Contact problem for plates with rigid inclusions intersecting the boundary
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2011
%P 99-107
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2011_3_a11/
%G ru
%F VTGU_2011_3_a11
T. A. Rotanova. Contact problem for plates with rigid inclusions intersecting the boundary. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2011), pp. 99-107. http://geodesic.mathdoc.fr/item/VTGU_2011_3_a11/

[1] Alekseev G. V., Khludnev A. M., “Treschina v uprugom tele, vykhodyaschaya na granitsu pod nulevym uglom”, Vestnik NGU, 9:2 (2009), 15–29 | Zbl

[2] Loigering G., Khludnev A. M., “O ravnovesii uprugikh tel, soderzhaschikh zhestkie vklyucheniya”, DAN, 430:1 (2010), 47–50 | MR

[3] Khludnev A. M., “Zadacha o treschine na granitse zhestkogo vklyucheniya v uprugoi plastine”, Izv. RAN. Mekhanika tverdogo tela, 2010, no. 5, 98–110

[4] Khludnev A. M., Novotny A. A., Sokolowski J., Zochowski A., “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mechan. Phys. Sol., 57:10 (2009), 1718–1732 | DOI | MR | Zbl

[5] Volmir A. S., Nelineinaya dinamika plastin i obolochek, Nauka, M., 1972 | MR

[6] Neustroeva N. V., “Zhestkoe vklyuchenie v kontaktnoi zadache dlya uprugikh plastin”, SibZhIM, 12:4 (2009), 92–105 | MR | Zbl

[7] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestnik NGU, 9:4 (2009), 51–64 | MR | Zbl

[8] Khludnev A. M., “Ob odnostoronnem kontakte dvukh plastin, raspolozhennykh pod uglom drug k drugu”, Zhurnal PMTF, 49:4 (2009), 553–567 | MR

[9] Temam R., Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991 | MR | Zbl

[10] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010