Contact problem for plates with rigid inclusions intersecting the boundary
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2011), pp. 99-107
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with the unilateral contact problem for two elastic plates located at an angle to each other. Both plates contain rigid inclusions intersecting the contact area. The rigid inclusion in the top plate intersects also its external boundary. The lower plate is deformed in its plane with the top plate being vertically deformed. Using a variational method the solvability of the problem is established. Assuming that the solution is sufficiently smooth, the differential statement being equivalent to the variational formulation is justified. We analyze the limit case corresponding to the unbounded increase of the bending rigidity of the top plate.
Keywords:
variational inequality, rigid inclusion, Kirchhoff–Love plate, contact problem, boundary intersection.
@article{VTGU_2011_3_a11,
author = {T. A. Rotanova},
title = {Contact problem for plates with rigid inclusions intersecting the boundary},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {99--107},
publisher = {mathdoc},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2011_3_a11/}
}
TY - JOUR AU - T. A. Rotanova TI - Contact problem for plates with rigid inclusions intersecting the boundary JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2011 SP - 99 EP - 107 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2011_3_a11/ LA - ru ID - VTGU_2011_3_a11 ER -
T. A. Rotanova. Contact problem for plates with rigid inclusions intersecting the boundary. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2011), pp. 99-107. http://geodesic.mathdoc.fr/item/VTGU_2011_3_a11/