On torsion-free Abelian groups with $UA$-rings of endomorphisms
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2011), pp. 55-58
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we study almost completely decomposable and strongly indecomposable torsion-free rank 2 Abelian groups the endomorphism ring of which is a unique addition ring.
Keywords:
unique addition ring, almost completely decomposable Abelian group, strongly indecomposable torsion-free Abelian group.
@article{VTGU_2011_2_a6,
author = {D. S. Chistyakov and O. V. Lyubimcev},
title = {On torsion-free {Abelian} groups with $UA$-rings of endomorphisms},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {55--58},
year = {2011},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2011_2_a6/}
}
TY - JOUR AU - D. S. Chistyakov AU - O. V. Lyubimcev TI - On torsion-free Abelian groups with $UA$-rings of endomorphisms JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2011 SP - 55 EP - 58 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTGU_2011_2_a6/ LA - ru ID - VTGU_2011_2_a6 ER -
D. S. Chistyakov; O. V. Lyubimcev. On torsion-free Abelian groups with $UA$-rings of endomorphisms. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2011), pp. 55-58. http://geodesic.mathdoc.fr/item/VTGU_2011_2_a6/
[1] Nelius Chr.-F., Ring emit eindentiger Addition, Paderborn, 1974
[2] Stephenson W., “Unique addition rings”, Can. J. Math., 21:6 (1969), 1455–1461 | DOI | MR | Zbl
[3] Mikhalev A. V., “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Mat. sb., 135(177):2 (1988), 210–224 | MR | Zbl
[4] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Svyazi abelevykh grupp i ikh kolets endomorfizmov, TGU, Tomsk, 2002
[5] Arnold D. M., “Finite rank torsion – free abelian groups and rings”, Lecture Notes in Math., 931, 1982, 1–191 | DOI | MR
[6] B. van der Merwe, “Unique addition modules”, Communications in algebra, 27:9 (1999), 4103–4115 | DOI | MR | Zbl