Acceleration of the line-by-line recurretnt method in Krylov subspaces
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2011), pp. 45-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two techniques of acceleration of line-by-line recurrent method in Krylov subspaces are considered by the example of the LR1 algorithm. The van der Vorst Bi-CGStab P algorithm is used as an accelerating method. It is shown that the traditional approach (generation of a preconditioner on the base of LR1 algorithm) doesn't yield the required result. At the same time, the direct combination of LR1 and Bi-CGStab P algorithms allows to raise the convergence speed considerably.
Keywords: difference elliptic equations, iterative method, Krylov subspaces, line-by-line recurrent method.
@article{VTGU_2011_2_a5,
     author = {A. A. Fomin and L. N. Fomina},
     title = {Acceleration of the line-by-line recurretnt method in {Krylov} subspaces},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {45--54},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2011_2_a5/}
}
TY  - JOUR
AU  - A. A. Fomin
AU  - L. N. Fomina
TI  - Acceleration of the line-by-line recurretnt method in Krylov subspaces
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2011
SP  - 45
EP  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2011_2_a5/
LA  - ru
ID  - VTGU_2011_2_a5
ER  - 
%0 Journal Article
%A A. A. Fomin
%A L. N. Fomina
%T Acceleration of the line-by-line recurretnt method in Krylov subspaces
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2011
%P 45-54
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2011_2_a5/
%G ru
%F VTGU_2011_2_a5
A. A. Fomin; L. N. Fomina. Acceleration of the line-by-line recurretnt method in Krylov subspaces. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2011), pp. 45-54. http://geodesic.mathdoc.fr/item/VTGU_2011_2_a5/

[1] Fomina L. N., “Ispolzovanie polineinogo rekurrentnogo metoda s peremennym parametrom kompensatsii dlya resheniya raznostnykh ellipticheskikh uravnenii”, Vychislitelnye tekhnologii. IVT SO RAN, 14:4 (2009), 108–120 | MR | Zbl

[2] Fomin A. A., Fomina L. N., “Sravnenie effektivnosti vysokoskorostnykh metodov resheniya raznostnykh ellipticheskikh SLAU”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2009, no. 2(6), 71–77

[3] Yousef Saad, Iterative Methods for Sparse Linear Systems, PWS Publ., N.Y., 1996, 460 pp. | Zbl

[4] Ilin V. P., Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, Izd-vo In-ta matematiki, Novosibirsk, 2000, 345 pp. | Zbl

[5] Van der Vorst H. A., “BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems”, SIAM J. Sci. Stat. Comput., 13:2 (1992), 631–644 | DOI | MR | Zbl

[6] Starchenko A. V., “Sravnitelnyi analiz nekotorykh iteratsionnykh metodov dlya chislennogo resheniya prostranstvennoi kraevoi zadachi dlya uravnenii ellipticheskogo tipa”, Vestnik TGU. Byulleten operativnoi nauchnoi informatsii, 10, TGU, Tomsk, 2003, 70–80

[7] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984, 152 pp.

[8] Fomin A. A., Fomina L. N., “Ob odnom variante polineinogo rekurrentnogo metoda resheniya raznostnykh ellipticheskikh uravnenii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 2(10), 20–27

[9] Vshivkov V. A., Zasypkina O. A., “Iteratsionnyi metod resheniya SLAU pervogo poryadka skhodimosti s reguliruemoi matritsei perekhoda”, Sibirskii zhurnal industrialnoi matematiki, 11:2 (2008), 40–49 | MR | Zbl