Stochastic model of dynamic relative increments stock price
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2011), pp. 38-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the process of relative increment of stock price is considered. The process is described using the generalized Ito equation. Stochastic dynamics was described with Lukoil stock prices during the period of 18.04.2008 up to 17.04.2009, with intervals $\Delta\tau=1$ min, $5$ min, $10$ min, $15$ min, $30$ min, and $60$ min.
Keywords: stochastic process, drift, volatility, relative increments, Wiener process, Markov process.
@article{VTGU_2011_2_a4,
     author = {P. V. Tryasuchev},
     title = {Stochastic model of dynamic relative increments stock price},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {38--44},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2011_2_a4/}
}
TY  - JOUR
AU  - P. V. Tryasuchev
TI  - Stochastic model of dynamic relative increments stock price
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2011
SP  - 38
EP  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2011_2_a4/
LA  - ru
ID  - VTGU_2011_2_a4
ER  - 
%0 Journal Article
%A P. V. Tryasuchev
%T Stochastic model of dynamic relative increments stock price
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2011
%P 38-44
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2011_2_a4/
%G ru
%F VTGU_2011_2_a4
P. V. Tryasuchev. Stochastic model of dynamic relative increments stock price. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2011), pp. 38-44. http://geodesic.mathdoc.fr/item/VTGU_2011_2_a4/

[1] Hull J., White A., “The Pricing of Options on Assets with Stochastic Volatilities”, J. Finance, 42 (1987), 281–300 | DOI

[2] Dragulescu A., Yakovenko V. M., “Probability distribution of returns in the Heston model with stochastic volatility”, Quant. Finance, 2 (2002), 443–453 | DOI | MR

[3] Cont R., “Empirical properties of asset returns: stylized facts and statistical issues”, Quant. Finance, 1 (2001), 223–236 | DOI

[4] Friedrich R., Peinke J., Renner Ch., “How to quantify deterministic and random influences on the statistics of the foreign exchange market”, Phys. Rev. Lett., 84 (2000), 5224–5227 | DOI

[5] Ivanova K., Ausloos M., Takayasu H., Deterministic and stochastic influences on Japan and US stock and foreign exchange markets. A Fokker-Planck approach, arXiv: condmat/0301268

[6] Stein E. M., Stein J. C., “Stock Price Distributions with Stochastic Volatility: An Analytic Approach”, Rev. Financial Studies, 4 (1991), 727–752 | DOI

[7] Heston S. L., “A closed-form solution for options with stochastic volatility with applications to bond and currency options”, Rev. Financial Studies, 6 (1993), 327–343 | DOI

[8] Bukhbinder G. L., Chistilin K. M., “Opisanie rossiiskogo fondovogo rynka v ramkakh modeli Gestona”, Matematicheskoe modelirovanie, 17:10 (2005), 31–38 | Zbl

[9] Remer R., Mahnke R., “Application of Heston model and its solution to German DAX data”, Physica A, 344 (2004), 236–239 | DOI

[10] Shiryaev A. N., Veroyatnost, Nauka, M., 1980, 574 pp. | MR | Zbl

[11] McNeil A. J., Frey R., Embrechts P., Quantitative Risk Management. Concepts, Techniques and Tools, Princeton University Press, Princeton, NJ, 2005 | MR | Zbl

[12] Bukhbinder G. L., Chistilin K. M., “Stokhasticheskaya dinamika kotirovok aktsii RAO EES”, Matematicheskoe modelirovanie, 17:2 (2005), 119–125 | Zbl

[13] Wilmott P., Oztukel A., “Uncertain parameters, an empirical stochastic colatility model and confidance limits”, Int. J. Theor. Appl. Fin., 1 (1998), 175–198 | DOI