Mathematical simulation of unsteady heat and mass transfer in an element of electronic equipment
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2011), pp. 124-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complex investigation of transient mixed convection in a typical element of electronics in the presence of a local heat source under the assumption of internal mass transfer has been carried out. The mathematical model has been formulated in the context of mechanics of continua in dimensionless variables such as stream function–vorticity vector–temperature–concentration. Distributions of streamlines, temperature fields, and concentration fields reflecting the features of the analyzed process have been obtained.
Keywords: electronics, mixed convection, thermal conductivity, mass transfer, heat source.
@article{VTGU_2011_2_a15,
     author = {M. A. Sheremet and N. I. Shishkin},
     title = {Mathematical simulation of unsteady heat and mass transfer in an element of electronic equipment},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {124--131},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2011_2_a15/}
}
TY  - JOUR
AU  - M. A. Sheremet
AU  - N. I. Shishkin
TI  - Mathematical simulation of unsteady heat and mass transfer in an element of electronic equipment
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2011
SP  - 124
EP  - 131
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2011_2_a15/
LA  - ru
ID  - VTGU_2011_2_a15
ER  - 
%0 Journal Article
%A M. A. Sheremet
%A N. I. Shishkin
%T Mathematical simulation of unsteady heat and mass transfer in an element of electronic equipment
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2011
%P 124-131
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2011_2_a15/
%G ru
%F VTGU_2011_2_a15
M. A. Sheremet; N. I. Shishkin. Mathematical simulation of unsteady heat and mass transfer in an element of electronic equipment. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2011), pp. 124-131. http://geodesic.mathdoc.fr/item/VTGU_2011_2_a15/

[1] Dulnev G. N., Semyashkin E. M., Teploobmen v radioelektronnykh apparatakh, Energiya, L., 1968, 360 pp.

[2] Kuznetsov G. V., Sheremet M. A., “Dvumernaya zadacha estestvennoi konvektsii v pryamougolnoi oblasti pri lokalnom nagreve i teploprovodnykh granitsakh konechnoi tolschiny”, Izvestiya RAN. Mekhanika zhidkosti i gaza, 2006, no. 6, 29–39 | Zbl

[3] Kuznetsov G. V., Sheremet M. A., “Matematicheskoe modelirovanie teplomassoperenosa v usloviyakh smeshannoi konvektsii v pryamougolnoi oblasti s istochnikom tepla i teploprovodnymi stenkami”, Teplofizika i aeromekhanika, 15:1 (2008), 107–120

[4] Kraus A. D., Okhlazhdenie elektronnogo oborudovaniya, Energiya, L., 1971, 248 pp.

[5] Biryulin G. V., Egorov V. I., Popov Yu. Yu., Savintseva L. A., “Teplovoi rezhim mikrosborok”, Issledovaniya i razrabotki v oblasti fiziki i priborostroeniya, Nauchno-tekhnicheskii vestnik SPbGU ITMO, 31, 2006, 115–117

[6] Dzhaluriya I., Estestvennaya konvektsiya, Mir, M., 1983, 400 pp.

[7] Sokovishin Yu. A., Martynenko O. G., Vvedenie v teoriyu svobodno-konvektivnogo teploobmena, Izd-vo Leningr. un-ta, L., 1982, 224 pp.

[8] Lykov A. V., Teoriya teploprovodnosti, Vysshaya shkola, M., 1967, 600 pp. | Zbl

[9] Paskonov V. M., Polezhaev V. I., Chudov L. A., Chislennoe modelirovanie protsessov teplo- i massoobmena, Nauka, M., 1984, 288 pp. | Zbl

[10] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR | Zbl

[11] Verzhbitskii G. V., Osnovy chislennykh metodov, Vysshaya shkola, M., 2002, 840 pp.

[12] De Vahl Davis G., “Natural convection of air in a square cavity: a bench numerical solution”, Int. J. Numerical Methods of Fluids, 3 (1983), 249–264 | DOI | Zbl

[13] Dixit H. N., Babu V., “Simulation of High Rayleigh Number Natural Convection in a Square Cavity using the Lattice Boltzmann Method”, Int. J. Heat Mass Transfer, 49 (2006), 727–739 | DOI | Zbl