To the theory of two-dimensionally ordered fields
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2011), pp. 16-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A family of two-dimensionally ordered infinitely narrow fields is constructed starting from a given linearly ordered field.
Keywords: 2-dimensionally ordered field, upper cone, transcendence basis.
@article{VTGU_2011_2_a1,
     author = {G. G. Pestov and E. A. Fomina},
     title = {To the theory of two-dimensionally ordered fields},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {16--19},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2011_2_a1/}
}
TY  - JOUR
AU  - G. G. Pestov
AU  - E. A. Fomina
TI  - To the theory of two-dimensionally ordered fields
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2011
SP  - 16
EP  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2011_2_a1/
LA  - ru
ID  - VTGU_2011_2_a1
ER  - 
%0 Journal Article
%A G. G. Pestov
%A E. A. Fomina
%T To the theory of two-dimensionally ordered fields
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2011
%P 16-19
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2011_2_a1/
%G ru
%F VTGU_2011_2_a1
G. G. Pestov; E. A. Fomina. To the theory of two-dimensionally ordered fields. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2011), pp. 16-19. http://geodesic.mathdoc.fr/item/VTGU_2011_2_a1/

[1] Pestov G. G., Dvumerno uporyadochennye polya, TGU, Tomsk, 2003

[2] Fomina E. A., “Ob odnom klasse dvumerno uporyadochennykh polei”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2008, no. 3(4), 32–34

[3] Pestov G. G, Fomina E. A., “Podpole $B$ beskonechno blizkikh k baze elementov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2009, no. 2(6), 41–47

[4] Novoa L. G., “Order characterization of the complex field”, Can. Math. Bull., 21:3 (1978), 313–318 | DOI | MR | Zbl