On the Lie bracket of endomorphisms of Abelian groups, 2
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2011), pp. 55-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider Abelian groups in which a fixed degree of any commutator of endomorphisms is zero. Groups with this property are described in some classes of groups.
Keywords: fully invariant subgroup, endomorphism ring, power $E$-commutant, power $E$-commutator.
@article{VTGU_2011_1_a6,
     author = {A. R. Chekhlov},
     title = {On the {Lie} bracket of endomorphisms of {Abelian} groups,~2},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {55--60},
     year = {2011},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2011_1_a6/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - On the Lie bracket of endomorphisms of Abelian groups, 2
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2011
SP  - 55
EP  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2011_1_a6/
LA  - ru
ID  - VTGU_2011_1_a6
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T On the Lie bracket of endomorphisms of Abelian groups, 2
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2011
%P 55-60
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2011_1_a6/
%G ru
%F VTGU_2011_1_a6
A. R. Chekhlov. On the Lie bracket of endomorphisms of Abelian groups, 2. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2011), pp. 55-60. http://geodesic.mathdoc.fr/item/VTGU_2011_1_a6/

[1] Chekhlov A. R., “O skobke Li endomorfizmov abelevykh grupp”, Vestnik TGU. Matematika i mekhanika, 2009, no. 2(6), 78–84

[2] Chekhlov A. R., “O svoistvakh tsentralno i kommutatorno invariantnykh podgrupp abelevykh grupp”, Vestnik Tomskogo gosuniversiteta. Matematika i mekhanika, 2009, no. 2(6), 85–99

[3] Chekhlov A. R., “Ob abelevykh gruppakh s normalnym koltsom endomorfizmov”, Algebra i logika, 48:4 (2009), 520–539 | MR | Zbl

[4] Chekhlov A. R., “$E$-nilpotentnye i $E$-razreshimye abelevy gruppy klassa 2”, Vestnik Tomskogo gosuniversiteta. Matematika i mekhanika, 2010, no. 1(9), 59–71 | MR

[5] Chekhlov A. R., “Nekotorye primery $E$-razreshimykh grupp”, Vestnik TGU. Matematika i mekhanika, 2010, no. 3(11), 69–76

[6] Chekhlov A. R., “O kommutatorno invariantnykh podgruppakh abelevykh grupp”, Sib. matem. zhurn., 51:5 (2010), 1163–1174 | MR | Zbl

[7] Chekhlov A. R., “Svoistva podgrupp abelevykh grupp, invariantnykh otnositelno proektsii”, Vestnik TGU. Matematika i mekhanika, 2008, no. 1(2), 76–82

[8] Chekhlov A. R., “O podgruppakh abelevykh grupp, invariantnykh otnositelno proektsii”, Fundament. i prikl. matem., 14:6 (2008), 211–218 | MR

[9] Chekhlov A. R., “O proektivno invariantnykh podgruppakh abelevykh grupp”, Vestnik TGU. Matematika i mekhanika, 2009, no. 1(5), 31–36

[10] Chekhlov A. R., “Separabelnye i vektornye gruppy, proektivno invariantnye podgruppy kotorykh vpolne invariantny”, Sib. matem. zhurn., 50:4 (2009), 942–953 | MR | Zbl

[11] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974; т. 2, 1977