$K$-contact structures on Lie groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2011), pp. 47-54
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, left invariant $K$-contact structures on Lie groups are considered. The main results are Theorem 1 expressing the Ricci tensor of a Lie group $G$ by the Ricci tensor of a quotient space $M=G/F_0$, where $F_0$ is a one-parametrical subgroup of the Reeb field $\xi$, and Theorem 2 establishing the connection between the tensor $N^{(1)}$ of a contact metric structure on $G$ and the Nijenhuis tensor $N$ of the corresponding almost complex structure on $M=G/F_0$.
Keywords:
contact Lie groups, contact metric structures, Sasakian structure, $K$-contact structures.
@article{VTGU_2011_1_a5,
author = {Y. V. Slavolyubova},
title = {$K$-contact structures on {Lie} groups},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {47--54},
year = {2011},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2011_1_a5/}
}
Y. V. Slavolyubova. $K$-contact structures on Lie groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2011), pp. 47-54. http://geodesic.mathdoc.fr/item/VTGU_2011_1_a5/
[1] Blair D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | Zbl
[2] Smolentsev N. K., “Prostranstva rimanovykh metrik”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 31, VINITI, M., 2003, 69–146
[3] Khakimdjanov Yu., Goze M., Medina A., Symplectic or Contact Structures on Lie Groups, 2002, 18 pp., arXiv: math.DG/0205290 | MR
[4] Besse A., Mnogoobraziya Einshteina, v 2 t., per. s angl., v. II, Mir, M., 1990, 384 pp. | MR | Zbl
[5] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1, 2, Nauka, M., 1981, 344 pp. | MR