On a necessary condition for a system of normalized elements to be a basis in a Hilbert space
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2011), pp. 44-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider a complete, minimal, almost normalized sequence $\{\varphi_k\}^\infty_{k=1}$ of elements of a Hilbert space $H$ such that their inner products have the property $|(\varphi_k,\varphi_j)|\ge\alpha$, $\alpha>0$ for all sufficiently large numbers $k,j$. It was proved that this sequence is not an unconditional basis in $H$.
Keywords: Hilbert space, almost normalized sequence, unconditional basis, Riesz basis, necessary condition for the basis.
Mots-clés : biorthogonal system
@article{VTGU_2011_1_a4,
     author = {M. A. Sadybekov and A. M. Sarsenbi},
     title = {On a~necessary condition for a~system of normalized elements to be a~basis in {a~Hilbert} space},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {44--46},
     year = {2011},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2011_1_a4/}
}
TY  - JOUR
AU  - M. A. Sadybekov
AU  - A. M. Sarsenbi
TI  - On a necessary condition for a system of normalized elements to be a basis in a Hilbert space
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2011
SP  - 44
EP  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2011_1_a4/
LA  - ru
ID  - VTGU_2011_1_a4
ER  - 
%0 Journal Article
%A M. A. Sadybekov
%A A. M. Sarsenbi
%T On a necessary condition for a system of normalized elements to be a basis in a Hilbert space
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2011
%P 44-46
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2011_1_a4/
%G ru
%F VTGU_2011_1_a4
M. A. Sadybekov; A. M. Sarsenbi. On a necessary condition for a system of normalized elements to be a basis in a Hilbert space. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2011), pp. 44-46. http://geodesic.mathdoc.fr/item/VTGU_2011_1_a4/

[1] Khmyleva T. E., Bukhtina I. P., “O nekotoroi posledovatelnosti elementov v gilbertovom prostranstve, ne yavlyayuscheisya bazisom”, Vestnik Tomskogo gosuniversiteta. Matematika i mekhanika, 2007, no. 1, 58–62

[2] Khmyleva T. E., Ivanova O. G., “O nekotorykh sistemakh v gilbertovom prostranstve, ne yavlyayuschikhsya bazisom”, Vestnik Tomskogo gosuniversiteta. Matematika i mekhanika, 2010, no. 3(11), 53–60

[3] Bari N. K., “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Uchenye zapiski MGU, 148, 1951, 69–107 | MR

[4] Sadybekov M. A., Sarsenbi A. M., “Primenenie otsenok antiapriornogo tipa v teorii bazisov prostranstva $L_2$”, Differentsialnye uravneniya, 44:6 (2008), 665–671 | MR | Zbl