On a necessary condition for a system of normalized elements to be a basis in a Hilbert space
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2011), pp. 44-46
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we consider a complete, minimal, almost normalized sequence $\{\varphi_k\}^\infty_{k=1}$ of elements of a Hilbert space $H$ such that their inner products have the property $|(\varphi_k,\varphi_j)|\ge\alpha$, $\alpha>0$ for all sufficiently large numbers $k,j$. It was proved that this sequence is not an unconditional basis in $H$.
Keywords:
Hilbert space, almost normalized sequence, unconditional basis, Riesz basis, necessary condition for the basis.
Mots-clés : biorthogonal system
Mots-clés : biorthogonal system
@article{VTGU_2011_1_a4,
author = {M. A. Sadybekov and A. M. Sarsenbi},
title = {On a~necessary condition for a~system of normalized elements to be a~basis in {a~Hilbert} space},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {44--46},
year = {2011},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2011_1_a4/}
}
TY - JOUR AU - M. A. Sadybekov AU - A. M. Sarsenbi TI - On a necessary condition for a system of normalized elements to be a basis in a Hilbert space JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2011 SP - 44 EP - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTGU_2011_1_a4/ LA - ru ID - VTGU_2011_1_a4 ER -
%0 Journal Article %A M. A. Sadybekov %A A. M. Sarsenbi %T On a necessary condition for a system of normalized elements to be a basis in a Hilbert space %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2011 %P 44-46 %N 1 %U http://geodesic.mathdoc.fr/item/VTGU_2011_1_a4/ %G ru %F VTGU_2011_1_a4
M. A. Sadybekov; A. M. Sarsenbi. On a necessary condition for a system of normalized elements to be a basis in a Hilbert space. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2011), pp. 44-46. http://geodesic.mathdoc.fr/item/VTGU_2011_1_a4/
[1] Khmyleva T. E., Bukhtina I. P., “O nekotoroi posledovatelnosti elementov v gilbertovom prostranstve, ne yavlyayuscheisya bazisom”, Vestnik Tomskogo gosuniversiteta. Matematika i mekhanika, 2007, no. 1, 58–62
[2] Khmyleva T. E., Ivanova O. G., “O nekotorykh sistemakh v gilbertovom prostranstve, ne yavlyayuschikhsya bazisom”, Vestnik Tomskogo gosuniversiteta. Matematika i mekhanika, 2010, no. 3(11), 53–60
[3] Bari N. K., “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Uchenye zapiski MGU, 148, 1951, 69–107 | MR
[4] Sadybekov M. A., Sarsenbi A. M., “Primenenie otsenok antiapriornogo tipa v teorii bazisov prostranstva $L_2$”, Differentsialnye uravneniya, 44:6 (2008), 665–671 | MR | Zbl