Removable sets and the distribution of intrinsic boundary components under quasi-isometries of domains in $R^n$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2011), pp. 9-25
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with various cases and conditions for removability of sets under quasi-isometrical maps. The distribution of intrinsic boundary components of domains in $R^n$ is studied.
Keywords:
quasi-isometrical maps, intrinsic metrics, infinitely connected domains, removed sets, distribution of boundary components.
@article{VTGU_2011_1_a1,
author = {A. P. Karmazin and D. R. Mukhutdinova},
title = {Removable sets and the distribution of intrinsic boundary components under quasi-isometries of domains in~$R^n$},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {9--25},
year = {2011},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2011_1_a1/}
}
TY - JOUR AU - A. P. Karmazin AU - D. R. Mukhutdinova TI - Removable sets and the distribution of intrinsic boundary components under quasi-isometries of domains in $R^n$ JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2011 SP - 9 EP - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTGU_2011_1_a1/ LA - ru ID - VTGU_2011_1_a1 ER -
%0 Journal Article %A A. P. Karmazin %A D. R. Mukhutdinova %T Removable sets and the distribution of intrinsic boundary components under quasi-isometries of domains in $R^n$ %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2011 %P 9-25 %N 1 %U http://geodesic.mathdoc.fr/item/VTGU_2011_1_a1/ %G ru %F VTGU_2011_1_a1
A. P. Karmazin; D. R. Mukhutdinova. Removable sets and the distribution of intrinsic boundary components under quasi-isometries of domains in $R^n$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2011), pp. 9-25. http://geodesic.mathdoc.fr/item/VTGU_2011_1_a1/
[1] Sychev A. V., Prostranstvennye kvazikonformnye otobrazheniya, Izd-vo Novosib. un-ta, Novosibirsk, 1975 | MR
[2] Aseev V. V., Sychev A. V., “O mnozhestvakh, ustranimykh dlya prostranstvennykh kvazikonformnykh otobrazhenii”, Sib. mat. zhurn., 15:6 (1974), 1213–1227 | MR | Zbl
[3] Karmazin A. P., Kvaziizometrii, teoriya predkontsov i metricheskie struktury prostranstvennykh oblastei, monografiya, Izd-vo Surgutsk. un-ta, Surgut, 2008
[4] Kuratovskii K., Topologiya, v 2 t., v. 1, Mir, M., 1966 ; т. 2, Мир, М., 1969 | MR
[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972