Removable sets and the distribution of intrinsic boundary components under quasi-isometries of domains in $R^n$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2011), pp. 9-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with various cases and conditions for removability of sets under quasi-isometrical maps. The distribution of intrinsic boundary components of domains in $R^n$ is studied.
Keywords: quasi-isometrical maps, intrinsic metrics, infinitely connected domains, removed sets, distribution of boundary components.
@article{VTGU_2011_1_a1,
     author = {A. P. Karmazin and D. R. Mukhutdinova},
     title = {Removable sets and the distribution of intrinsic boundary components under quasi-isometries of domains in~$R^n$},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {9--25},
     year = {2011},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2011_1_a1/}
}
TY  - JOUR
AU  - A. P. Karmazin
AU  - D. R. Mukhutdinova
TI  - Removable sets and the distribution of intrinsic boundary components under quasi-isometries of domains in $R^n$
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2011
SP  - 9
EP  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2011_1_a1/
LA  - ru
ID  - VTGU_2011_1_a1
ER  - 
%0 Journal Article
%A A. P. Karmazin
%A D. R. Mukhutdinova
%T Removable sets and the distribution of intrinsic boundary components under quasi-isometries of domains in $R^n$
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2011
%P 9-25
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2011_1_a1/
%G ru
%F VTGU_2011_1_a1
A. P. Karmazin; D. R. Mukhutdinova. Removable sets and the distribution of intrinsic boundary components under quasi-isometries of domains in $R^n$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2011), pp. 9-25. http://geodesic.mathdoc.fr/item/VTGU_2011_1_a1/

[1] Sychev A. V., Prostranstvennye kvazikonformnye otobrazheniya, Izd-vo Novosib. un-ta, Novosibirsk, 1975 | MR

[2] Aseev V. V., Sychev A. V., “O mnozhestvakh, ustranimykh dlya prostranstvennykh kvazikonformnykh otobrazhenii”, Sib. mat. zhurn., 15:6 (1974), 1213–1227 | MR | Zbl

[3] Karmazin A. P., Kvaziizometrii, teoriya predkontsov i metricheskie struktury prostranstvennykh oblastei, monografiya, Izd-vo Surgutsk. un-ta, Surgut, 2008

[4] Kuratovskii K., Topologiya, v 2 t., v. 1, Mir, M., 1966 ; т. 2, Мир, М., 1969 | MR

[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972