Two-dimensionally ordered groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2011), pp. 5-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the set of elements of order two in a two-ordered group is a normal subgroup.
Keywords: 2-dimensional order, 2-ordered group, realization of a two-ordered set, two-order projection to a straight line.
@article{VTGU_2011_1_a0,
     author = {A. I. Zabarina and G. G. Pestov},
     title = {Two-dimensionally ordered groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--8},
     year = {2011},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2011_1_a0/}
}
TY  - JOUR
AU  - A. I. Zabarina
AU  - G. G. Pestov
TI  - Two-dimensionally ordered groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2011
SP  - 5
EP  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2011_1_a0/
LA  - ru
ID  - VTGU_2011_1_a0
ER  - 
%0 Journal Article
%A A. I. Zabarina
%A G. G. Pestov
%T Two-dimensionally ordered groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2011
%P 5-8
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2011_1_a0/
%G ru
%F VTGU_2011_1_a0
A. I. Zabarina; G. G. Pestov. Two-dimensionally ordered groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2011), pp. 5-8. http://geodesic.mathdoc.fr/item/VTGU_2011_1_a0/

[1] Pestov G. G., Dvumerno uporyadochennye polya, Tomsk, 2003

[2] Pestov G. G., “$n$-uporyadochennye mnozhestva”, Tr. Irkut. gos. un-ta, 74:6 (1970), 146–169

[3] Zabarina A. I., Pestov G. G., “Ob $n$-merno uporyadochennykh gruppakh”, Vestnik TGU, 2003, no. 280, 40–43

[4] Tobolkin A. A., “Ob $n$-uporyadochennykh gruppakh”, Materialy X Vserossiiskoi konferentsii studentov, aspirantov i molodykh uchënykh “Nauka i obrazovanie”, v. 1, Ch. 2, Izd-vo TGPU, Tomsk, 2006, 107–113

[5] Fuchs L., Partially ordered algebraic systems, Pergamon press, Oxford–London–New York–Paris, 1963 | MR | Zbl