@article{VTGU_2010_4_a4,
author = {B. M. Shumilov},
title = {An algorithm with splitting of the wavelet transform of {Hermitian} cubic splines},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {45--55},
year = {2010},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2010_4_a4/}
}
TY - JOUR AU - B. M. Shumilov TI - An algorithm with splitting of the wavelet transform of Hermitian cubic splines JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2010 SP - 45 EP - 55 IS - 4 UR - http://geodesic.mathdoc.fr/item/VTGU_2010_4_a4/ LA - ru ID - VTGU_2010_4_a4 ER -
B. M. Shumilov. An algorithm with splitting of the wavelet transform of Hermitian cubic splines. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2010), pp. 45-55. http://geodesic.mathdoc.fr/item/VTGU_2010_4_a4/
[1] Dobeshi I., Desyat lektsii po veivletam, per. s angl., NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001, 332 pp.
[2] Chui Ch., Vvedenie v veivlety, per. s angl., Mir, M., 2001, 412 pp.
[3] Stolnits E., DeRouz T., Salezin D., Veivlety v kompyuternoi grafike, per. s angl., NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002, 272 pp.
[4] Dahmen W., Han B., Jia R.-Q., Kunoth A., “Biorthogonal multiwavelets on the interval: cubic Hermite splines”, Constr. Approx., 16 (2000), 221–259 | DOI | MR | Zbl
[5] Han B., “Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets”, J. Approxim. Theory, 110 (2001), 18–53 | DOI | MR | Zbl
[6] Popova O. O., Ruchkina Yu. Yu., Shumilov B. M., “Postroenie sistemy bazisnykh veivletov Ermita dlya sluchaya neravnomernoi setki”, 4-ya Vseros. nauch.-praktich. konf. studentov “Molodezh i sovremennye informatsionnye tekhnologii”, TPU, Tomsk, 2006, 37–38
[7] Jia R.-Q., Liu S.-T., “Wavelet bases of Hermite cubic splines on the interval”, Advances Computational Mathematics, 25 (2006), 23–39 | DOI | MR | Zbl
[8] Shumilov B. M., Esharov E. A., “Postroenie ermitovykh splain-veivletov”, Vestnik Tomskogo gosudarstvennogo universiteta. Prilozhenie, 2006, no. 19, 260–266
[9] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR
[10] Heil C., Strang G., Strela V., “Approximation by translate of refinable functions”, Numer. Math., 73 (1996), 75–94 | DOI | MR | Zbl
[11] Maleknejad K., Youse M., “Numerical solution of the integral equation of the second kind by using wavelet bases of Hermite cubic splines”, Applied Mathematics and Computation, 183 (2006), 134–141 | DOI | MR | Zbl
[12] Zhao G., Xu S., Li W., Zhu X., “Wavelets-based multiresolution representation and manipulation of closed $B$-spline curves”, Proceedings of IC-SEC, 2002, 490–493
[13] Shumilov B. M., Esharov E. A., “Nestatsionarnye splain-veivlety v GIS i SAPR lineino-protyazhennykh prostranstvennykh ob'ektov”, Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitelnogo universiteta, 2006, no. 1(12), 153–163
[14] Tursunov D. A., Shumilov B. M., Esharov E. A., Tursunov E. A., “Novyi tip ermitovykh multiveivletov pyatoi stepeni”, Pyataya Sibirskaya konferentsiya po parallelnym i vysokoproizvoditelnym vychisleniyam, Programma i tezisy dokladov (1–3 dekabrya 2009 g.), Izd-vo Tom. un-ta, Tomsk, 2009, 57–58