On some systems of a~Hilbert space which are not bases
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2010), pp. 53-60

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a sequence of normalized vectors $\{h_n\}^\infty_{n=1}$ in a Hilbert space $H$ such that the inner products $\langle h_i,h_j\rangle\ge\alpha$, $\alpha>0$, $i\ne j$, $i,j\in\mathbf N$. It is shown that this sequence of vectors is not a base in $H$.
Keywords: Hilbert space, inner product, basis, complete sequences, angle between elements of a sequence.
@article{VTGU_2010_3_a6,
     author = {T. E. Khmyleva and O. G. Ivanova},
     title = {On some systems of {a~Hilbert} space which are not bases},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {53--60},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2010_3_a6/}
}
TY  - JOUR
AU  - T. E. Khmyleva
AU  - O. G. Ivanova
TI  - On some systems of a~Hilbert space which are not bases
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2010
SP  - 53
EP  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2010_3_a6/
LA  - ru
ID  - VTGU_2010_3_a6
ER  - 
%0 Journal Article
%A T. E. Khmyleva
%A O. G. Ivanova
%T On some systems of a~Hilbert space which are not bases
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2010
%P 53-60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2010_3_a6/
%G ru
%F VTGU_2010_3_a6
T. E. Khmyleva; O. G. Ivanova. On some systems of a~Hilbert space which are not bases. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2010), pp. 53-60. http://geodesic.mathdoc.fr/item/VTGU_2010_3_a6/