On some systems of a Hilbert space which are not bases
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2010), pp. 53-60
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we consider a sequence of normalized vectors $\{h_n\}^\infty_{n=1}$ in a Hilbert space $H$ such that the inner products $\langle h_i,h_j\rangle\ge\alpha$, $\alpha>0$, $i\ne j$, $i,j\in\mathbf N$. It is shown that this sequence of vectors is not a base in $H$.
Keywords:
Hilbert space, inner product, basis, complete sequences, angle between elements of a sequence.
@article{VTGU_2010_3_a6,
author = {T. E. Khmyleva and O. G. Ivanova},
title = {On some systems of {a~Hilbert} space which are not bases},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {53--60},
year = {2010},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2010_3_a6/}
}
TY - JOUR AU - T. E. Khmyleva AU - O. G. Ivanova TI - On some systems of a Hilbert space which are not bases JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2010 SP - 53 EP - 60 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTGU_2010_3_a6/ LA - ru ID - VTGU_2010_3_a6 ER -
T. E. Khmyleva; O. G. Ivanova. On some systems of a Hilbert space which are not bases. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2010), pp. 53-60. http://geodesic.mathdoc.fr/item/VTGU_2010_3_a6/
[1] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003, 440 pp. | MR
[2] Grinblyum M. M., “O predstavlenii prostranstva tipa V v vide pryamoi summy prostranstv”, DAN, 70:5 (1950), 749–752 | MR
[3] Bukhtina I. P., Khmyleva T. E., “O nekotoroi posledovatelnosti elementov v gilbertovom prostranstve, ne yavlyayuscheisya bazisom”, Vestnik Tomskogo gosuniversiteta, 2007, no. 1, 58–62