Integral analogs of series in Banach spaces
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2010), pp. 29-37
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Integral analogs of conditionally convergent series in Banach spaces are investigated. The values range of an integral analog of a series is shown to be an affine subspace. It can be found by the way described in the Steinitz theorem about the sum range of series in finite-dimension spaces.
Keywords: integral analog of a series, rearrangement of a series, sum range of a series, values range of an integral.
@article{VTGU_2010_3_a3,
     author = {E. G. Lazareva and O. S. Osipov},
     title = {Integral analogs of series in {Banach} spaces},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {29--37},
     year = {2010},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2010_3_a3/}
}
TY  - JOUR
AU  - E. G. Lazareva
AU  - O. S. Osipov
TI  - Integral analogs of series in Banach spaces
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2010
SP  - 29
EP  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2010_3_a3/
LA  - ru
ID  - VTGU_2010_3_a3
ER  - 
%0 Journal Article
%A E. G. Lazareva
%A O. S. Osipov
%T Integral analogs of series in Banach spaces
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2010
%P 29-37
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2010_3_a3/
%G ru
%F VTGU_2010_3_a3
E. G. Lazareva; O. S. Osipov. Integral analogs of series in Banach spaces. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2010), pp. 29-37. http://geodesic.mathdoc.fr/item/VTGU_2010_3_a3/

[1] Osipov O. S., “Ob integralnom analoge ryada s dvukhtochechnoi oblastyu summ”, Sib. mat. zhurn., 50:6 (2009), 1348–1355 | MR | Zbl

[2] Kadets M. I., Kadets V. M., Series in Banach Spaces. Conditional and Unconditional Convergence, Birkhauser Verlag, 1997, 153 pp. | MR | Zbl

[3] Kornilov P. A., “O mnozhestve summ uslovno skhodyaschegosya funktsionalnogo ryada”, Matem. sbornik, 137(179):1 (1988), 114–127 | MR | Zbl

[4] Podstrigich A. G., “Neszhimaemye sistemy v $B$-prostranstvakh”, Materialy XXXIV Mezhdunar. nauch. studencheskoi konf. “Student i nauchno-tekhnicheskii progress”. Matematika, Novosibirsk, 1995, 68

[5] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962, 895 pp.