Free $n$-periodic topological groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2010), pp. 23-28
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we introduce the concepts of a free $n$-periodic topological group and a free abelian $n$-periodic topological group of the Tychonoff space $X$ and prove the existence of such groups.
Keywords:
topological group, free group, $n$-periodic group, continuous homomorphism.
@article{VTGU_2010_3_a2,
author = {L. V. Genze},
title = {Free $n$-periodic topological groups},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {23--28},
year = {2010},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2010_3_a2/}
}
L. V. Genze. Free $n$-periodic topological groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2010), pp. 23-28. http://geodesic.mathdoc.fr/item/VTGU_2010_3_a2/
[1] Markov A. A., “O svobodnykh topologicheskikh gruppakh”, Izv. AN SSSR. Ser. matem., 9:1 (1945), 3–64 | MR | Zbl
[2] Arkhangelskii A. V., Topologicheskie prostranstva i nepreryvnye otobrazheniya. Zamechaniya o topologicheskikh gruppakh, Izd-vo Mosk. un-ta, M., 1969, 147 pp.
[3] Genze L. V., Gul'ko S. P., Khmyleva T. E., “Classification of continuous $n$-valued function spaces and free periodic topological groups for ordinals”, Top. Proc., 38 (2011), 1–15 E-published on June 30, 2010 http://topology.auburn.edu/tp/reprints/v38/ | MR | Zbl
[4] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975, 656 pp.