Free $n$-periodic topological groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2010), pp. 23-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we introduce the concepts of a free $n$-periodic topological group and a free abelian $n$-periodic topological group of the Tychonoff space $X$ and prove the existence of such groups.
Keywords: topological group, free group, $n$-periodic group, continuous homomorphism.
@article{VTGU_2010_3_a2,
     author = {L. V. Genze},
     title = {Free $n$-periodic topological groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {23--28},
     year = {2010},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2010_3_a2/}
}
TY  - JOUR
AU  - L. V. Genze
TI  - Free $n$-periodic topological groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2010
SP  - 23
EP  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2010_3_a2/
LA  - ru
ID  - VTGU_2010_3_a2
ER  - 
%0 Journal Article
%A L. V. Genze
%T Free $n$-periodic topological groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2010
%P 23-28
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2010_3_a2/
%G ru
%F VTGU_2010_3_a2
L. V. Genze. Free $n$-periodic topological groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2010), pp. 23-28. http://geodesic.mathdoc.fr/item/VTGU_2010_3_a2/

[1] Markov A. A., “O svobodnykh topologicheskikh gruppakh”, Izv. AN SSSR. Ser. matem., 9:1 (1945), 3–64 | MR | Zbl

[2] Arkhangelskii A. V., Topologicheskie prostranstva i nepreryvnye otobrazheniya. Zamechaniya o topologicheskikh gruppakh, Izd-vo Mosk. un-ta, M., 1969, 147 pp.

[3] Genze L. V., Gul'ko S. P., Khmyleva T. E., “Classification of continuous $n$-valued function spaces and free periodic topological groups for ordinals”, Top. Proc., 38 (2011), 1–15 E-published on June 30, 2010 http://topology.auburn.edu/tp/reprints/v38/ | MR | Zbl

[4] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975, 656 pp.