Viscoplastic behavior of ultrafine-grained alloys
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2010), pp. 120-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Features of mechanical behavior of ultrafine-grained (UFG) titanium and aluminum alloys under quasi-static and shock wave loading with amplitudes up to 10 GPa were studied by the numerical simulation method. To describe viscoplastic behavior of alloys, a multilevel model is offered. The model takes into account several structural factors influencing the mechanical behavior of coarse-grained and UFG alloys. The results display that the strain rate sensitivity of the yield stress of UFG and polycrystalline titanium alloys is significantly different in the range from $10^{-3}$ to $10^6$ s$^{-1}$. The visco-plastic behavior of UFG FCC and HCP alloys is shown to be different at high strain rates.
Keywords: viscoplasticity, high-strain rates, ultra-fine-grained alloys.
@article{VTGU_2010_3_a14,
     author = {E. G. Skripnyak and V. A. Skripnyak and A. A. Kozulin and V. V. Skripnyak},
     title = {Viscoplastic behavior of ultrafine-grained alloys},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {120--128},
     year = {2010},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2010_3_a14/}
}
TY  - JOUR
AU  - E. G. Skripnyak
AU  - V. A. Skripnyak
AU  - A. A. Kozulin
AU  - V. V. Skripnyak
TI  - Viscoplastic behavior of ultrafine-grained alloys
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2010
SP  - 120
EP  - 128
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2010_3_a14/
LA  - ru
ID  - VTGU_2010_3_a14
ER  - 
%0 Journal Article
%A E. G. Skripnyak
%A V. A. Skripnyak
%A A. A. Kozulin
%A V. V. Skripnyak
%T Viscoplastic behavior of ultrafine-grained alloys
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2010
%P 120-128
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2010_3_a14/
%G ru
%F VTGU_2010_3_a14
E. G. Skripnyak; V. A. Skripnyak; A. A. Kozulin; V. V. Skripnyak. Viscoplastic behavior of ultrafine-grained alloys. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2010), pp. 120-128. http://geodesic.mathdoc.fr/item/VTGU_2010_3_a14/

[1] Meyers M. A., Mishra A., Benson D. J., “Mechanical properties of nanocrystalline materials”, Progress in Materials Science, 51 (2006), 427–556 | DOI

[2] Meyers M. A., Vohringer O., Lubarda V. A., “The onset of twinning in metals: a constitutive description”, Acta Mater., 49 (2001), 4025–4039 | DOI

[3] Armstrong R. W., Zerilli F. J., “Dislocation mechanics aspects on plastic instability and shear banding”, Mechanics Mater., 17 (1994), 319–327 | DOI

[4] Khan A. S., Suh Y. S., Kazmi R., “Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys”, Int. J. Plasticity, 20 (2004), 2233–2248 | DOI | Zbl

[5] Skripnyak V. A., Skripnyak E. G., “Shear strength of nanostructured and ultra-fine grained materials in shock waves”, Phys. Mesomechanics, 7:1 (2004), 297–300

[6] Skripnyak V. A., Skripnyak E. G, Nazarov M. N., “Mechanical behavior of nanostructured materials at high strain rates. Computer simulation”, Proc. 14th APS Topical Conference on Shock-Compression of Condensed Matter, eds. M. D. Furnish et al., AIP Conf. Proc., 2006, 503–506 | DOI

[7] Frost G. Dzh., Eshbi M. F., Karty mekhanizmov deformatsii, Metallurgiya, Chelyabinsk, 1989, 328 pp.

[8] Hockauf M., Meyer L. W., Halle T., et. al., “Mechanical properties and microstructural changes of ultrafine-grained AA6963T6 during high-cycle fatigue”, Int. J. Mat. Res., 97 (2006), 1392–1400 | DOI

[9] Krüger L., Meyer L. W., Razorenov S. V., Kanel G. I., “Investigation of dynamic flow and strength properties of Ti-6-22-22S at normal and elevated temperatures”, Int. J. of Impact Eng., 28 (2003), 877–890 | DOI

[10] Meyer L. W., Hockauf M., Kruger L., et. al., “Compressive behavior of ultrafine-grained AA6063-T6 over a wide range of strains and strain rates”, Int. J. Mat. Res., 98 (2007), 1–8 | DOI

[11] Skripnyak V. A., Skripnyak E. G., Kryuger L. i dr., “Mekhanicheskoe povedenie submikrokristallicheskikh metallicheskikh splavov pri dinamicheskikh nagruzkakh”, Ekstremalnye sostoyaniya veschestva. Detonatsiya. Udarnye volny, Trudy Mezhdunar. konf. “IX Kharitonovskie tematicheskie nauchnye chteniya”, RFYaTs VNIIEF, Sarov, 2007, 369–373

[12] Skripnyak V. A., Skripnyak E. G., Kryuger L. i dr., “Mekhanicheskoe povedenie submikrokristallicheskikh titanovykh splavov pri dinamicheskikh nagruzkakh”, Deformatsiya i razrushenie materialov i nanomaterialov, IMET RAN, M., 2007, 304–305

[13] Chichili D. R., Ramesh K. T., Hemker K. J., “The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling”, Acta Mater., 46:3 (1998), 1025–1043 | DOI

[14] Harding J., “The temperature and strain rate sensitivity of alpha titanium”, Arch. Mechanics, 27 (1975), 715–732

[15] Danian C., Yuying Yu, Zhihua Y., et al., “A modified Cochran – Banner spall model”, Int. J. Impact Eng., 31 (2005), 1106–1118 | DOI

[16] Kanel G. I., Razorenov S. V., Utkin A. V., Fortov V. E., Eksperimentalnye profili udarnykh voln v kondensirovannykh veschestvakh, Fizmatlit, M., 2008, 246 pp.