The range of the Schwartz derivative
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2010), pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem about the range of the Schwartz derivative in the classes $S$ and $SM$ with given boundary functions is solved by the parametric representation method.
Keywords: parametric representation method, functional, Schwartz derivative.
@article{VTGU_2010_3_a0,
     author = {I. A. Aleksandrov and V. A. Pchelintsev},
     title = {The range of the {Schwartz} derivative},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--12},
     year = {2010},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2010_3_a0/}
}
TY  - JOUR
AU  - I. A. Aleksandrov
AU  - V. A. Pchelintsev
TI  - The range of the Schwartz derivative
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2010
SP  - 5
EP  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2010_3_a0/
LA  - ru
ID  - VTGU_2010_3_a0
ER  - 
%0 Journal Article
%A I. A. Aleksandrov
%A V. A. Pchelintsev
%T The range of the Schwartz derivative
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2010
%P 5-12
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2010_3_a0/
%G ru
%F VTGU_2010_3_a0
I. A. Aleksandrov; V. A. Pchelintsev. The range of the Schwartz derivative. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2010), pp. 5-12. http://geodesic.mathdoc.fr/item/VTGU_2010_3_a0/

[1] Löwner K., “Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises”, Math. Ann., 89 (1923), 103–121 | DOI | MR | Zbl

[2] Aleksandrov I. A., Parametricheskie prodolzheniya v teorii odnolistnykh funktsii, Nauka, M., 1976, 344 pp. | MR

[3] Aleksandrov I. A., Metody geometricheskoi teorii analiticheskikh funktsii, Izd-vo Tom. un-ta, Tomsk, 2001, 220 pp. | Zbl

[4] Aleksandrov I. A., “Oblast znachenii funktsionala $I=\{f,w\}$ na klasse $S$”, Voprosy matematiki, Tr. Tom. gos. un-ta, 155, 1961, 56–60

[5] Alenitsyn Yu. E., “Ob odnolistnykh funktsiyakh v mnogosvyaznykh oblastyakh”, Matem. sb., 39(81):3 (1956), 315–336 | MR | Zbl

[6] Lebedev N. A., Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975, 336 pp. | MR | Zbl