@article{VTGU_2010_2_a2,
author = {A. A. Fomin and L. N. Fomina},
title = {New version of line-by-line recursive method for solving a~difference elliptical equations},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {20--27},
year = {2010},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2010_2_a2/}
}
TY - JOUR AU - A. A. Fomin AU - L. N. Fomina TI - New version of line-by-line recursive method for solving a difference elliptical equations JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2010 SP - 20 EP - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTGU_2010_2_a2/ LA - ru ID - VTGU_2010_2_a2 ER -
%0 Journal Article %A A. A. Fomin %A L. N. Fomina %T New version of line-by-line recursive method for solving a difference elliptical equations %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2010 %P 20-27 %N 2 %U http://geodesic.mathdoc.fr/item/VTGU_2010_2_a2/ %G ru %F VTGU_2010_2_a2
A. A. Fomin; L. N. Fomina. New version of line-by-line recursive method for solving a difference elliptical equations. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2010), pp. 20-27. http://geodesic.mathdoc.fr/item/VTGU_2010_2_a2/
[1] Samarskii A.A., Vabischevich P.N., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999, 248 pp.
[2] Yousef Saad, Iterative Methods for Sparse Linear Systems, PWS Publ., N.Y., 1996, 460 pp. | Zbl
[3] Zverev V.G., “Modifitsirovannyi polineinyi metod resheniya raznostnykh ellipticheskikh uravnenii”, ZhVM i MF, 38:9 (1998), 1553–1562 | MR | Zbl
[4] Van der Vorst H.A., “BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems”, SIAM J. Sci. Stat. Comput., 13:2 (1992), 631–644 | DOI | MR | Zbl
[5] Starchenko A.V., “Sravnitelnyi analiz nekotorykh iteratsionnykh metodov dlya chislennogo resheniya prostranstvennoi kraevoi zadachi dlya uravnenii ellipticheskogo tipa”, Vestnik TGU. Byulleten operativnoi nauchnoi informatsii, 10, TGU, Tomsk, 2003, 70–80
[6] Ilin V.P., “Metody bisopryazhennykh napravlenii v podprostranstvakh Krylova”, Sibirskii zhurnal industrialnoi matematiki, 11:4 (2008), 47–60 | MR | Zbl
[7] Ilin V.P., Metody nepolnoi faktorizatsii dlya resheniya algebraicheskikh sistem, Fizmatlit, M., 1995, 288 pp. | MR
[8] Fomin A.A., Fomina L.N., “Polineinyi rekurrentnyi metod resheniya SLAU s pyatidiagonalnoi matritsei”, Chetvertaya Sibirskaya shkola-seminar po parallelnym i vysokoproizvoditelnym vychisleniyam (Tomsk, 9–11 oktyabrya 2007 g.), Deltaplan, Tomsk, 2008, 192–201
[9] Fomina L.N., “Ispolzovanie polineinogo rekurrentnogo metoda s peremennym parametrom kompensatsii dlya resheniya raznostnykh ellipticheskikh uravnenii”, Vychislitelnye tekhnologii. IVT SO RAN, 14:4 (2009), 108–120 | MR | Zbl
[10] Fomin A.A., Fomina L.N., “Sravnenie effektivnosti vysokoskorostnykh metodov resheniya raznostnykh ellipticheskikh SLAU”, Vestnik TGU. Matematika i mekhanika, 2009, no. 2, 71–77
[11] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984, 152 pp.
[12] Zverev V.G., “About the iteration method for solving difference equations”, Lecture notes in computer science, 3401, Springer-Verlag, Berlin–Heidelberg, 2005, 621–628 | DOI | Zbl
[13] Chetverushkin B.N., “Ob odnom iteratsionnom algoritme resheniya raznostnykh uravnenii”, ZhVM i MF, 16:2 (1976), 519–524 | MR | Zbl