New version of line-by-line recursive method for solving a difference elliptical equations
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2010), pp. 20-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a new version of the closure equation for the line-by-line recursive method. The equation is a double-point linear connection of the desired solution’s values in the neighboring nodes of the area grid. A special feature of the considered closure is asymptotically exact value of the equation factors in the case when the solution converges. Higher efficiency of the discussed version of the line-by-line recursive method for solving systems of linear algebraic equations with ill-conditioned matrices as compared with its previous versions is demonstrated by examples of model problem solutions.
Keywords: system of linear algebraic equations, iteration method, closure equations.
@article{VTGU_2010_2_a2,
     author = {A. A. Fomin and L. N. Fomina},
     title = {New version of line-by-line recursive method for solving a~difference elliptical equations},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {20--27},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2010_2_a2/}
}
TY  - JOUR
AU  - A. A. Fomin
AU  - L. N. Fomina
TI  - New version of line-by-line recursive method for solving a difference elliptical equations
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2010
SP  - 20
EP  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2010_2_a2/
LA  - ru
ID  - VTGU_2010_2_a2
ER  - 
%0 Journal Article
%A A. A. Fomin
%A L. N. Fomina
%T New version of line-by-line recursive method for solving a difference elliptical equations
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2010
%P 20-27
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2010_2_a2/
%G ru
%F VTGU_2010_2_a2
A. A. Fomin; L. N. Fomina. New version of line-by-line recursive method for solving a difference elliptical equations. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2010), pp. 20-27. http://geodesic.mathdoc.fr/item/VTGU_2010_2_a2/

[1] Samarskii A.A., Vabischevich P.N., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999, 248 pp.

[2] Yousef Saad, Iterative Methods for Sparse Linear Systems, PWS Publ., N.Y., 1996, 460 pp. | Zbl

[3] Zverev V.G., “Modifitsirovannyi polineinyi metod resheniya raznostnykh ellipticheskikh uravnenii”, ZhVM i MF, 38:9 (1998), 1553–1562 | MR | Zbl

[4] Van der Vorst H.A., “BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems”, SIAM J. Sci. Stat. Comput., 13:2 (1992), 631–644 | DOI | MR | Zbl

[5] Starchenko A.V., “Sravnitelnyi analiz nekotorykh iteratsionnykh metodov dlya chislennogo resheniya prostranstvennoi kraevoi zadachi dlya uravnenii ellipticheskogo tipa”, Vestnik TGU. Byulleten operativnoi nauchnoi informatsii, 10, TGU, Tomsk, 2003, 70–80

[6] Ilin V.P., “Metody bisopryazhennykh napravlenii v podprostranstvakh Krylova”, Sibirskii zhurnal industrialnoi matematiki, 11:4 (2008), 47–60 | MR | Zbl

[7] Ilin V.P., Metody nepolnoi faktorizatsii dlya resheniya algebraicheskikh sistem, Fizmatlit, M., 1995, 288 pp. | MR

[8] Fomin A.A., Fomina L.N., “Polineinyi rekurrentnyi metod resheniya SLAU s pyatidiagonalnoi matritsei”, Chetvertaya Sibirskaya shkola-seminar po parallelnym i vysokoproizvoditelnym vychisleniyam (Tomsk, 9–11 oktyabrya 2007 g.), Deltaplan, Tomsk, 2008, 192–201

[9] Fomina L.N., “Ispolzovanie polineinogo rekurrentnogo metoda s peremennym parametrom kompensatsii dlya resheniya raznostnykh ellipticheskikh uravnenii”, Vychislitelnye tekhnologii. IVT SO RAN, 14:4 (2009), 108–120 | MR | Zbl

[10] Fomin A.A., Fomina L.N., “Sravnenie effektivnosti vysokoskorostnykh metodov resheniya raznostnykh ellipticheskikh SLAU”, Vestnik TGU. Matematika i mekhanika, 2009, no. 2, 71–77

[11] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984, 152 pp.

[12] Zverev V.G., “About the iteration method for solving difference equations”, Lecture notes in computer science, 3401, Springer-Verlag, Berlin–Heidelberg, 2005, 621–628 | DOI | Zbl

[13] Chetverushkin B.N., “Ob odnom iteratsionnom algoritme resheniya raznostnykh uravnenii”, ZhVM i MF, 16:2 (1976), 519–524 | MR | Zbl