Estimations of distortion of the modules for the mappings with $s$-average characteristic
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2010), pp. 5-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present work geometrical properties of mappings with $s$-averaged characteristic are investigating. For such mappings the estimation theorems for distortion of the module of a family of curves and the module of an image of a family of curves are proved. The obtained results enable to establish equivalence of the geometrical and analytical definitions of the mappings with $s$-averaged characteristic and give additional mathematical methods at their research.
Keywords: mappings with $s$-averaged characteristic, module of a family of curves, estimation of distortion of the module.
@article{VTGU_2010_2_a0,
     author = {A. N. Malyutina and M. A. Elizarova},
     title = {Estimations of distortion of the modules for the mappings with $s$-average characteristic},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--15},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2010_2_a0/}
}
TY  - JOUR
AU  - A. N. Malyutina
AU  - M. A. Elizarova
TI  - Estimations of distortion of the modules for the mappings with $s$-average characteristic
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2010
SP  - 5
EP  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2010_2_a0/
LA  - ru
ID  - VTGU_2010_2_a0
ER  - 
%0 Journal Article
%A A. N. Malyutina
%A M. A. Elizarova
%T Estimations of distortion of the modules for the mappings with $s$-average characteristic
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2010
%P 5-15
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2010_2_a0/
%G ru
%F VTGU_2010_2_a0
A. N. Malyutina; M. A. Elizarova. Estimations of distortion of the modules for the mappings with $s$-average characteristic. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2010), pp. 5-15. http://geodesic.mathdoc.fr/item/VTGU_2010_2_a0/

[1] Väisälä J., Lectures on $n$-dimentional quasiconformal mappings, Lectures and Notes in Math., Springer Verlag, Berlin–Heidelberg–N.Y., 1971, 144 pp. | MR | Zbl

[2] Shabat B.V., “Metod modulei v prostranstve”, DAN SSSR, 130:6 (1960), 1210–1215

[3] Sychev A.V., Moduli i prostranstvennye kvazikonformnye otobrazheniya, Nauka, Novosibirsk, 1983, 152 pp. | MR

[4] Martio O., Rickman S., Väisälä J., Definitions for quasiregular mappings, Ans. Acad. Sci. Fenn., 448, 1969 | MR | Zbl

[5] Reshetnyak Yu.G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR

[6] Poletskii E.A., “Metod modulei dlya negomeomorfnykh kvazikonformnykh otobrazhenii”, Mat. sbornik, 83(125):2(10) (1970), 261–272 | MR | Zbl

[7] Strugov Yu.F., Otobrazheniya, kvazikonformnye v srednem, Preprint AN SSSR, Sib. otd. In-t matematiki, Novosibirsk, 1979, 39 pp.

[8] Kruglikov V.I., Paikov V.I., Nekotorye geometricheskie svoistva otobrazhenii s iskazheniem, ogranichennym v srednem, Dep. v VINITI 06.09.82 No 4747-82 Dep, Donetsk un-t, Donetsk, 1982, 43 pp.

[9] Malyutina A.N., Krivosheeva I.I., Batalova N.N. Batalova N.N., “Iskazhenie sfericheskogo modulya semeistva krivykh”, Issledovaniya po matematicheskomu analizu i algebre, 3, Izd. TGU, Tomsk, 2001, 179–195

[10] Rado T., Reichelderfer R.V., Continuous transformation in analisis, Springer Verlag, Berlin–Göttingen–Heidelberg, 1955, 442 pp.

[11] Malyutina A.N., Elizarova M.A., “Teoremy o polunepreryvnosti snizu otobrazhenii s $s$-usrednennoi kharakteristikoi”, Vestnik TGU. Matematika i mekhanika, 2009, no. 4(8), 46–52

[12] Chernavskii A.V., “Konechnokratnye otkrytye otobrazheniya mnogoobrazii”, Mat. sbornik, 65:3 (1964), 357–369 | MR | Zbl

[13] Saks S., Teoriya integrala, IL, M., 1949 | Zbl

[14] Goldshtein V.M., Vodopyanov S.I., “Metricheskoe popolnenie oblasti pri pomoschi konformnoi emkosti, invariantnoe pri kvazikonformnykh otobrazheniyakh”, DAN SSSR, 238:5 (1978), 1040–1042 | MR