A mathematical model of vibrations for a stack of rectangular plates with allowance for pointlike constraints
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2010), pp. 72-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a mathematical model of forced vibrations of a stack of flat plates with pointlike elastic constraints is proposed. Consistency of the proposed mathematical model is shown. A calculation algorithm for the received mathematical model is proposed and illustrative examples of calculation about forced vibrations for the case of a curved plate are presented.
Keywords: mathematical model, vibrations of plates, elastic problem, pointlike constraint, zero radius potential, natural vibrations.
@article{VTGU_2010_1_a8,
     author = {G. E. Berikhanova and B. T. Zhumagulov and B. E. Kanguzhin},
     title = {A mathematical model of vibrations for a stack of rectangular plates with allowance for pointlike constraints},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {72--86},
     year = {2010},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2010_1_a8/}
}
TY  - JOUR
AU  - G. E. Berikhanova
AU  - B. T. Zhumagulov
AU  - B. E. Kanguzhin
TI  - A mathematical model of vibrations for a stack of rectangular plates with allowance for pointlike constraints
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2010
SP  - 72
EP  - 86
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2010_1_a8/
LA  - ru
ID  - VTGU_2010_1_a8
ER  - 
%0 Journal Article
%A G. E. Berikhanova
%A B. T. Zhumagulov
%A B. E. Kanguzhin
%T A mathematical model of vibrations for a stack of rectangular plates with allowance for pointlike constraints
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2010
%P 72-86
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2010_1_a8/
%G ru
%F VTGU_2010_1_a8
G. E. Berikhanova; B. T. Zhumagulov; B. E. Kanguzhin. A mathematical model of vibrations for a stack of rectangular plates with allowance for pointlike constraints. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2010), pp. 72-86. http://geodesic.mathdoc.fr/item/VTGU_2010_1_a8/

[1] Bazarov M.B., Safarov I.I., Shokin Yu.I., Chislennoe modelirovanie kolebanii dissipativno odnorodnykh i neodnorodnykh mekhanicheskikh sistem, Izd-vo SO RAN, Novosibirsk, 1996, 189 pp.

[2] Treffts E., Matematicheskaya teoriya uprugosti, Gostekhizdat, L.; M., 1934, 172 pp.

[3] Dubrovin B.A., Novikov S.P., Fomin A.T., Sovremennaya geometriya, Nauka, M., 1979, 760 pp.

[4] Elsgolts L.E., Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1969, 424 pp.

[5] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977, 504 pp.