On assignment of additional conditions in the method of construction of a spline preserving the integral of a function over its domain
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2010), pp. 47-52
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present work are being studied ways of assignment of additional conditions, which are necessary for finding the coefficients of the spline, approximating the function of one variable in such a way that integrals over the region of definition of the spline and the function are equal.
Keywords: spline approximation, approximation of a function of one variable, approximation error estimation.
@article{VTGU_2010_1_a5,
     author = {O. P. Fedorova and O. V. Kulish},
     title = {On assignment of additional conditions in the method of construction of a spline preserving the integral of a function over its domain},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {47--52},
     year = {2010},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2010_1_a5/}
}
TY  - JOUR
AU  - O. P. Fedorova
AU  - O. V. Kulish
TI  - On assignment of additional conditions in the method of construction of a spline preserving the integral of a function over its domain
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2010
SP  - 47
EP  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2010_1_a5/
LA  - ru
ID  - VTGU_2010_1_a5
ER  - 
%0 Journal Article
%A O. P. Fedorova
%A O. V. Kulish
%T On assignment of additional conditions in the method of construction of a spline preserving the integral of a function over its domain
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2010
%P 47-52
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2010_1_a5/
%G ru
%F VTGU_2010_1_a5
O. P. Fedorova; O. V. Kulish. On assignment of additional conditions in the method of construction of a spline preserving the integral of a function over its domain. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2010), pp. 47-52. http://geodesic.mathdoc.fr/item/VTGU_2010_1_a5/

[1] Fedorova O.P., “Ob odnom podkhode k priblizheniyu funktsii splainami”, Vestnik TGU. Matematika i mekhanika, 2008, no. 2(3), 61–66

[2] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp.

[3] Samarskii A.A., Nikolaev E.S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 589 pp.