The topologies of linear continuity
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2010), pp. 15-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the real plane the topologies of linear continuity are introduced, i.e. such topologies continuity of function with respect to them is equivalent to continuity of all restrictions of this function on the straight line at the plane. Regularity and normality of these topologies are investigated.
Keywords: linear continuity
Mots-clés : product topologies.
@article{VTGU_2010_1_a1,
     author = {Ya. S. Grinshpon},
     title = {The topologies of linear continuity},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {15--20},
     year = {2010},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2010_1_a1/}
}
TY  - JOUR
AU  - Ya. S. Grinshpon
TI  - The topologies of linear continuity
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2010
SP  - 15
EP  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2010_1_a1/
LA  - ru
ID  - VTGU_2010_1_a1
ER  - 
%0 Journal Article
%A Ya. S. Grinshpon
%T The topologies of linear continuity
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2010
%P 15-20
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2010_1_a1/
%G ru
%F VTGU_2010_1_a1
Ya. S. Grinshpon. The topologies of linear continuity. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2010), pp. 15-20. http://geodesic.mathdoc.fr/item/VTGU_2010_1_a1/

[1] Knight C.J., Moran W., Pym J.S., “The topologies of separate continuity. I”, Proc. of Cambridge Philosophy Society, 68 (1970), 663–671 | DOI | MR | Zbl

[2] Knight C.J., Moran W., Pym J.S., “The topologies of separate continuity. II”, Proc. of Cambridge Philosophy Society, 71 (1972), 307–319 | DOI | MR | Zbl

[3] Piotrowski Z., Valin R.W., “Separately continuous functions: approximations, extensions, and restrictions”, Int. J. Mathematics and Mathematical Sciences, 54 (2003), 3469–3477 | DOI | MR | Zbl

[4] Young W.H., Young G.C., “Discontinuous functions continuous with respect to every straight line”, Quarter Journal of Mathematics. Oxford, 41 (1910), 87–93 | Zbl