The topologies of linear continuity
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2010), pp. 15-20
Cet article a éte moissonné depuis la source Math-Net.Ru
On the real plane the topologies of linear continuity are introduced, i.e. such topologies continuity of function with respect to them is equivalent to continuity of all restrictions of this function on the straight line at the plane. Regularity and normality of these topologies are investigated.
Keywords:
linear continuity
Mots-clés : product topologies.
Mots-clés : product topologies.
@article{VTGU_2010_1_a1,
author = {Ya. S. Grinshpon},
title = {The topologies of linear continuity},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {15--20},
year = {2010},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2010_1_a1/}
}
Ya. S. Grinshpon. The topologies of linear continuity. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2010), pp. 15-20. http://geodesic.mathdoc.fr/item/VTGU_2010_1_a1/
[1] Knight C.J., Moran W., Pym J.S., “The topologies of separate continuity. I”, Proc. of Cambridge Philosophy Society, 68 (1970), 663–671 | DOI | MR | Zbl
[2] Knight C.J., Moran W., Pym J.S., “The topologies of separate continuity. II”, Proc. of Cambridge Philosophy Society, 71 (1972), 307–319 | DOI | MR | Zbl
[3] Piotrowski Z., Valin R.W., “Separately continuous functions: approximations, extensions, and restrictions”, Int. J. Mathematics and Mathematical Sciences, 54 (2003), 3469–3477 | DOI | MR | Zbl
[4] Young W.H., Young G.C., “Discontinuous functions continuous with respect to every straight line”, Quarter Journal of Mathematics. Oxford, 41 (1910), 87–93 | Zbl