$IF$-groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2010), pp. 5-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study $IF$-groups, i.e., groups containing proper fully invariant subgroups isomorphic to the group itself. We prove some general properties of $IF$-groups and establish the connection between separable $IF$-groups and their basic subgroups. Torsion complete $IF$-groups are described in detail.
Mots-clés : $IF$-group, torsion complete group.
Keywords: fully invariant subgroup, wide subgroup, Ulm-Kaplansky invariants
@article{VTGU_2010_1_a0,
     author = {S. Ya. Grinshpon and M. M. Nikol'skaya (Savinkova)},
     title = {$IF$-groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--14},
     year = {2010},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2010_1_a0/}
}
TY  - JOUR
AU  - S. Ya. Grinshpon
AU  - M. M. Nikol'skaya (Savinkova)
TI  - $IF$-groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2010
SP  - 5
EP  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2010_1_a0/
LA  - ru
ID  - VTGU_2010_1_a0
ER  - 
%0 Journal Article
%A S. Ya. Grinshpon
%A M. M. Nikol'skaya (Savinkova)
%T $IF$-groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2010
%P 5-14
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2010_1_a0/
%G ru
%F VTGU_2010_1_a0
S. Ya. Grinshpon; M. M. Nikol'skaya (Savinkova). $IF$-groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2010), pp. 5-14. http://geodesic.mathdoc.fr/item/VTGU_2010_1_a0/

[1] Beaumont R.A., Pierce R.S., “Isomorphic direct summands of abelian groups”, Math. Annalen, 153 (1964), 21–37 | DOI | MR

[2] Monk G.S., “Abelian p-groups without proper isomorphic pure dense subgroups”, Ill. J. Math., 14:1 (1970), 164–177 | MR | Zbl

[3] Goldsmith B., Óhógáin S., Wallutis S., “Quasi-minimal groups”, Proc. Amer. Math. Soc., 132:8 (2004), 2185–2195 | DOI | MR | Zbl

[4] Benabdallah K.M., Eisenstadt B.J., Irwin J.M., and Poluianov E.W., “The structure of large subgroups of primary Abelian groups”, Acta Math. Acad. Scient. Hung., 21:3-4 (1970), 421–435 | DOI | MR | Zbl

[5] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974, 336 pp.

[6] Grinshpon S.Ya., “O stroenii vpolne kharakteristicheskikh podgrupp abelevykh grupp bez krucheniya”, Abelevy gruppy i moduli, 1982, 56–92

[7] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977, 416 pp.

[8] Pierce R.S., “Homomorphisms of primary Abelian groups”, Topics in Abelian Groups, Chicago, 1963, 215–310 | MR

[9] Kulikov L.Ya., “K teorii abelevykh grupp proizvolnoi moschnosti”, Mat. sb., 16(58):2 (1945), 129–162 | MR | Zbl

[10] Grinshpon S.Ya., “O nekotorykh klassakh primarnykh abelevykh grupp pochti izomorfnykh po vpolne kharakteristicheskim podgruppam”, Izv. vuzov. Matematika, 1976, no. 2, 23–30 | MR | Zbl