$IF$-groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2010), pp. 5-14

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study $IF$-groups, i.e., groups containing proper fully invariant subgroups isomorphic to the group itself. We prove some general properties of $IF$-groups and establish the connection between separable $IF$-groups and their basic subgroups. Torsion complete $IF$-groups are described in detail.
Mots-clés : $IF$-group, torsion complete group.
Keywords: fully invariant subgroup, wide subgroup, Ulm-Kaplansky invariants
@article{VTGU_2010_1_a0,
     author = {S. Ya. Grinshpon and M. M. Nikol'skaya (Savinkova)},
     title = {$IF$-groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--14},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2010_1_a0/}
}
TY  - JOUR
AU  - S. Ya. Grinshpon
AU  - M. M. Nikol'skaya (Savinkova)
TI  - $IF$-groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2010
SP  - 5
EP  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2010_1_a0/
LA  - ru
ID  - VTGU_2010_1_a0
ER  - 
%0 Journal Article
%A S. Ya. Grinshpon
%A M. M. Nikol'skaya (Savinkova)
%T $IF$-groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2010
%P 5-14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2010_1_a0/
%G ru
%F VTGU_2010_1_a0
S. Ya. Grinshpon; M. M. Nikol'skaya (Savinkova). $IF$-groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2010), pp. 5-14. http://geodesic.mathdoc.fr/item/VTGU_2010_1_a0/