About distortion theorems for one class quasi-conformal mappings, conformal outside a ring
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2009), pp. 65-74

Voir la notice de l'article provenant de la source Math-Net.Ru

The author considers the class of quasiconformal homeomorphisms of extended complex plane onto itself, such as $f(\infty)=\infty$, $f'(\infty)=1$, $f(0)=0$. The area theorem was derived in the form of inequality for Grunsky coefficients. This inequality can be used for estimate functionals such as distortion theorems. Sufficient conditions of univalence functions $f(z)$ of this class are given.
Keywords: quasi-conformal homeomorphism, Grunsky coefficients, conditions of univalence, area theorems.
@article{VTGU_2009_4_a5,
     author = {V. A. Shchepetev},
     title = {About distortion theorems for one class quasi-conformal mappings, conformal outside a ring},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {65--74},
     publisher = {mathdoc},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_4_a5/}
}
TY  - JOUR
AU  - V. A. Shchepetev
TI  - About distortion theorems for one class quasi-conformal mappings, conformal outside a ring
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2009
SP  - 65
EP  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2009_4_a5/
LA  - ru
ID  - VTGU_2009_4_a5
ER  - 
%0 Journal Article
%A V. A. Shchepetev
%T About distortion theorems for one class quasi-conformal mappings, conformal outside a ring
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2009
%P 65-74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2009_4_a5/
%G ru
%F VTGU_2009_4_a5
V. A. Shchepetev. About distortion theorems for one class quasi-conformal mappings, conformal outside a ring. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2009), pp. 65-74. http://geodesic.mathdoc.fr/item/VTGU_2009_4_a5/